Policy Gradient With Serial Markov Chain Reasoning
- URL: http://arxiv.org/abs/2210.06766v1
- Date: Thu, 13 Oct 2022 06:15:29 GMT
- Title: Policy Gradient With Serial Markov Chain Reasoning
- Authors: Edoardo Cetin, Oya Celiktutan
- Abstract summary: We introduce a new framework that performs decision-making in reinforcement learning as an iterative reasoning process.
We show our framework has several useful properties that are inherently missing from traditional RL.
Our resulting algorithm achieves state-of-the-art performance in popular Mujoco and DeepMind Control benchmarks.
- Score: 10.152838128195468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new framework that performs decision-making in reinforcement
learning (RL) as an iterative reasoning process. We model agent behavior as the
steady-state distribution of a parameterized reasoning Markov chain (RMC),
optimized with a new tractable estimate of the policy gradient. We perform
action selection by simulating the RMC for enough reasoning steps to approach
its steady-state distribution. We show our framework has several useful
properties that are inherently missing from traditional RL. For instance, it
allows agent behavior to approximate any continuous distribution over actions
by parameterizing the RMC with a simple Gaussian transition function. Moreover,
the number of reasoning steps to reach convergence can scale adaptively with
the difficulty of each action selection decision and can be accelerated by
re-using past solutions. Our resulting algorithm achieves state-of-the-art
performance in popular Mujoco and DeepMind Control benchmarks, both for
proprioceptive and pixel-based tasks.
Related papers
- Process Reward Model with Q-Value Rankings [18.907163177605607]
Process Reward Modeling (PRM) is critical for complex reasoning and decision-making tasks.
We introduce the Process Q-value Model (PQM), a novel framework that redefines PRM in the context of a Markov Decision Process.
PQM optimize Q-value rankings based on a novel comparative loss function, enhancing the model's ability to capture the intricate dynamics among sequential decisions.
arXiv Detail & Related papers (2024-10-15T05:10:34Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - POMDP inference and robust solution via deep reinforcement learning: An
application to railway optimal maintenance [0.7046417074932257]
We propose a combined framework for inference and robust solution of POMDPs via deep RL.
First, all transition and observation model parameters are jointly inferred via Markov Chain Monte Carlo sampling of a hidden Markov model.
The POMDP with uncertain parameters is then solved via deep RL techniques with the parameter distributions incorporated into the solution via domain randomization.
arXiv Detail & Related papers (2023-07-16T15:44:58Z) - Learning Sampling Distributions for Model Predictive Control [36.82905770866734]
Sampling-based approaches to Model Predictive Control (MPC) have become a cornerstone of contemporary approaches to MPC.
We propose to carry out all operations in the latent space, allowing us to take full advantage of the learned distribution.
Specifically, we frame the learning problem as bi-level optimization and show how to train the controller with backpropagation-through-time.
arXiv Detail & Related papers (2022-12-05T20:35:36Z) - Online Probabilistic Model Identification using Adaptive Recursive MCMC [8.465242072268019]
We suggest the Adaptive Recursive Markov Chain Monte Carlo (ARMCMC) method.
It eliminates the shortcomings of conventional online techniques while computing the entire probability density function of model parameters.
We demonstrate our approach using parameter estimation in a soft bending actuator and the Hunt-Crossley dynamic model.
arXiv Detail & Related papers (2022-10-23T02:06:48Z) - Reinforcement Learning with a Terminator [80.34572413850186]
We learn the parameters of the TerMDP and leverage the structure of the estimation problem to provide state-wise confidence bounds.
We use these to construct a provably-efficient algorithm, which accounts for termination, and bound its regret.
arXiv Detail & Related papers (2022-05-30T18:40:28Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z) - Stein Variational Model Predictive Control [130.60527864489168]
Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
arXiv Detail & Related papers (2020-11-15T22:36:59Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.