Stein Variational Model Predictive Control
- URL: http://arxiv.org/abs/2011.07641v4
- Date: Mon, 12 Apr 2021 16:20:07 GMT
- Title: Stein Variational Model Predictive Control
- Authors: Alexander Lambert, Adam Fishman, Dieter Fox, Byron Boots, Fabio Ramos
- Abstract summary: Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
- Score: 130.60527864489168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decision making under uncertainty is critical to real-world, autonomous
systems. Model Predictive Control (MPC) methods have demonstrated favorable
performance in practice, but remain limited when dealing with complex
probability distributions. In this paper, we propose a generalization of MPC
that represents a multitude of solutions as posterior distributions. By casting
MPC as a Bayesian inference problem, we employ variational methods for
posterior computation, naturally encoding the complexity and multi-modality of
the decision making problem. We present a Stein variational gradient descent
method to estimate the posterior directly over control parameters, given a cost
function and observed state trajectories. We show that this framework leads to
successful planning in challenging, non-convex optimal control problems.
Related papers
- POMDP inference and robust solution via deep reinforcement learning: An
application to railway optimal maintenance [0.7046417074932257]
We propose a combined framework for inference and robust solution of POMDPs via deep RL.
First, all transition and observation model parameters are jointly inferred via Markov Chain Monte Carlo sampling of a hidden Markov model.
The POMDP with uncertain parameters is then solved via deep RL techniques with the parameter distributions incorporated into the solution via domain randomization.
arXiv Detail & Related papers (2023-07-16T15:44:58Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Multistage Stochastic Optimization via Kernels [3.7565501074323224]
We develop a non-parametric, data-driven, tractable approach for solving multistage optimization problems.
We show that the proposed method produces decision rules with near-optimal average performance.
arXiv Detail & Related papers (2023-03-11T23:19:32Z) - Sample Complexity of Robust Reinforcement Learning with a Generative
Model [0.0]
We propose a model-based reinforcement learning (RL) algorithm for learning an $epsilon$-optimal robust policy.
We consider three different forms of uncertainty sets, characterized by the total variation distance, chi-square divergence, and KL divergence.
In addition to the sample complexity results, we also present a formal analytical argument on the benefit of using robust policies.
arXiv Detail & Related papers (2021-12-02T18:55:51Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Sequential Stochastic Optimization in Separable Learning Environments [0.0]
We consider a class of sequential decision-making problems under uncertainty that can encompass various types of supervised learning concepts.
These problems have a completely observed state process and a partially observed modulation process, where the state process is affected by the modulation process only through an observation process.
We model this broad class of problems as a partially observed Markov decision process (POMDP)
arXiv Detail & Related papers (2021-08-21T21:29:04Z) - Combining Gaussian processes and polynomial chaos expansions for
stochastic nonlinear model predictive control [0.0]
We introduce a new algorithm to explicitly consider time-invariant uncertainties in optimal control problems.
The main novelty in this paper is to use this combination in an efficient fashion to obtain mean and variance estimates of nonlinear transformations.
It is shown how to formulate both chance-constraints and a probabilistic objective for the optimal control problem.
arXiv Detail & Related papers (2021-03-09T14:25:08Z) - Identification of Unexpected Decisions in Partially Observable
Monte-Carlo Planning: a Rule-Based Approach [78.05638156687343]
We propose a methodology for analyzing POMCP policies by inspecting their traces.
The proposed method explores local properties of policy behavior to identify unexpected decisions.
We evaluate our approach on Tiger, a standard benchmark for POMDPs, and a real-world problem related to mobile robot navigation.
arXiv Detail & Related papers (2020-12-23T15:09:28Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Scalable Control Variates for Monte Carlo Methods via Stochastic
Optimization [62.47170258504037]
This paper presents a framework that encompasses and generalizes existing approaches that use controls, kernels and neural networks.
Novel theoretical results are presented to provide insight into the variance reduction that can be achieved, and an empirical assessment, including applications to Bayesian inference, is provided in support.
arXiv Detail & Related papers (2020-06-12T22:03:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.