TiDAL: Learning Training Dynamics for Active Learning
- URL: http://arxiv.org/abs/2210.06788v3
- Date: Thu, 28 Sep 2023 18:19:48 GMT
- Title: TiDAL: Learning Training Dynamics for Active Learning
- Authors: Seong Min Kye, Kwanghee Choi, Hyeongmin Byun, Buru Chang
- Abstract summary: We propose Training Dynamics for Active Learning (TiDAL) to quantify uncertainties of unlabeled data.
Since tracking the TD of all the large-scale unlabeled data is impractical, TiDAL utilizes an additional prediction module that learns the TD of labeled data.
Our TiDAL achieves better or comparable performance on both balanced and imbalanced benchmark datasets compared to state-of-the-art AL methods.
- Score: 10.832194534164142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning (AL) aims to select the most useful data samples from an
unlabeled data pool and annotate them to expand the labeled dataset under a
limited budget. Especially, uncertainty-based methods choose the most uncertain
samples, which are known to be effective in improving model performance.
However, AL literature often overlooks training dynamics (TD), defined as the
ever-changing model behavior during optimization via stochastic gradient
descent, even though other areas of literature have empirically shown that TD
provides important clues for measuring the sample uncertainty. In this paper,
we propose a novel AL method, Training Dynamics for Active Learning (TiDAL),
which leverages the TD to quantify uncertainties of unlabeled data. Since
tracking the TD of all the large-scale unlabeled data is impractical, TiDAL
utilizes an additional prediction module that learns the TD of labeled data. To
further justify the design of TiDAL, we provide theoretical and empirical
evidence to argue the usefulness of leveraging TD for AL. Experimental results
show that our TiDAL achieves better or comparable performance on both balanced
and imbalanced benchmark datasets compared to state-of-the-art AL methods,
which estimate data uncertainty using only static information after model
training.
Related papers
- Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Continual Test-time Domain Adaptation via Dynamic Sample Selection [38.82346845855512]
This paper proposes a Dynamic Sample Selection (DSS) method for Continual Test-time Domain Adaptation (CTDA)
We apply joint positive and negative learning on both high- and low-quality samples to reduce the risk of using wrong information.
Our approach is also evaluated in the 3D point cloud domain, showcasing its versatility and potential for broader applicability.
arXiv Detail & Related papers (2023-10-05T06:35:21Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - An Empirical Study on the Efficacy of Deep Active Learning for Image
Classification [11.398892277968427]
Deep Active Learning (DAL) has been advocated as a promising method to reduce labeling costs in supervised learning.
Existing evaluations of DAL methods are based on different settings, and their results are controversial.
This paper comprehensively evaluates 19 existing DAL methods in a uniform setting.
arXiv Detail & Related papers (2022-11-30T17:44:59Z) - ADT-SSL: Adaptive Dual-Threshold for Semi-Supervised Learning [68.53717108812297]
Semi-Supervised Learning (SSL) has advanced classification tasks by inputting both labeled and unlabeled data to train a model jointly.
This paper proposes an Adaptive Dual-Threshold method for Semi-Supervised Learning (ADT-SSL)
Experimental results show that the proposed ADT-SSL achieves state-of-the-art classification accuracy.
arXiv Detail & Related papers (2022-05-21T11:52:08Z) - A Comparative Survey of Deep Active Learning [76.04825433362709]
Active Learning (AL) is a set of techniques for reducing labeling cost by sequentially selecting data samples from a large unlabeled data pool for labeling.
Deep Learning (DL) is data-hungry, and the performance of DL models scales monotonically with more training data.
In recent years, Deep Active Learning (DAL) has risen as feasible solutions for maximizing model performance while minimizing the expensive labeling cost.
arXiv Detail & Related papers (2022-03-25T05:17:24Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z) - Deep Active Learning for Biased Datasets via Fisher Kernel
Self-Supervision [5.352699766206807]
Active learning (AL) aims to minimize labeling efforts for data-demanding deep neural networks (DNNs)
We propose a low-complexity method for feature density matching using self-supervised Fisher kernel (FK)
Our method outperforms state-of-the-art methods on MNIST, SVHN, and ImageNet classification while requiring only 1/10th of processing.
arXiv Detail & Related papers (2020-03-01T03:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.