ADT-SSL: Adaptive Dual-Threshold for Semi-Supervised Learning
- URL: http://arxiv.org/abs/2205.10571v1
- Date: Sat, 21 May 2022 11:52:08 GMT
- Title: ADT-SSL: Adaptive Dual-Threshold for Semi-Supervised Learning
- Authors: Zechen Liang, Yuan-Gen Wang, Wei Lu, Xiaochun Cao
- Abstract summary: Semi-Supervised Learning (SSL) has advanced classification tasks by inputting both labeled and unlabeled data to train a model jointly.
This paper proposes an Adaptive Dual-Threshold method for Semi-Supervised Learning (ADT-SSL)
Experimental results show that the proposed ADT-SSL achieves state-of-the-art classification accuracy.
- Score: 68.53717108812297
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-Supervised Learning (SSL) has advanced classification tasks by inputting
both labeled and unlabeled data to train a model jointly. However, existing SSL
methods only consider the unlabeled data whose predictions are beyond a fixed
threshold (e.g., 0.95), ignoring the valuable information from those less than
0.95. We argue that these discarded data have a large proportion and are
usually of hard samples, thereby benefiting the model training. This paper
proposes an Adaptive Dual-Threshold method for Semi-Supervised Learning
(ADT-SSL). Except for the fixed threshold, ADT extracts another class-adaptive
threshold from the labeled data to take full advantage of the unlabeled data
whose predictions are less than 0.95 but more than the extracted one.
Accordingly, we engage CE and $L_2$ loss functions to learn from these two
types of unlabeled data, respectively. For highly similar unlabeled data, we
further design a novel similar loss to make the prediction of the model
consistency. Extensive experiments are conducted on benchmark datasets,
including CIFAR-10, CIFAR-100, and SVHN. Experimental results show that the
proposed ADT-SSL achieves state-of-the-art classification accuracy.
Related papers
- FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness
for Semi-Supervised Learning [73.13448439554497]
Semi-Supervised Learning (SSL) has been an effective way to leverage abundant unlabeled data with extremely scarce labeled data.
Most SSL methods are commonly based on instance-wise consistency between different data transformations.
We propose FlatMatch which minimizes a cross-sharpness measure to ensure consistent learning performance between the two datasets.
arXiv Detail & Related papers (2023-10-25T06:57:59Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers)
We introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference.
We propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers.
arXiv Detail & Related papers (2023-03-21T09:07:15Z) - Are labels informative in semi-supervised learning? -- Estimating and
leveraging the missing-data mechanism [4.675583319625962]
Semi-supervised learning is a powerful technique for leveraging unlabeled data to improve machine learning models.
It can be affected by the presence of informative'' labels, which occur when some classes are more likely to be labeled than others.
We propose a novel approach to address this issue by estimating the missing-data mechanism and using inverse propensity weighting to debias any SSL algorithm.
arXiv Detail & Related papers (2023-02-15T09:18:46Z) - FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning [46.95063831057502]
We propose emphFreeMatch to define and adjust the confidence threshold in a self-adaptive manner according to the model's learning status.
FreeMatch achieves textbf5.78%, textbf13.59%, and textbf1.28% error rate reduction over the latest state-of-the-art method FlexMatch on CIFAR-10 with 1 label per class.
arXiv Detail & Related papers (2022-05-15T10:07:52Z) - Taming Overconfident Prediction on Unlabeled Data from Hindsight [50.9088560433925]
Minimizing prediction uncertainty on unlabeled data is a key factor to achieve good performance in semi-supervised learning.
This paper proposes a dual mechanism, named ADaptive Sharpening (ADS), which first applies a soft-threshold to adaptively mask out determinate and negligible predictions.
ADS significantly improves the state-of-the-art SSL methods by making it a plug-in.
arXiv Detail & Related papers (2021-12-15T15:17:02Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
Self-Tuning is a novel approach to enable data-efficient deep learning.
It unifies the exploration of labeled and unlabeled data and the transfer of a pre-trained model.
It outperforms its SSL and TL counterparts on five tasks by sharp margins.
arXiv Detail & Related papers (2021-02-25T14:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.