Exploiting Mixed Unlabeled Data for Detecting Samples of Seen and Unseen
Out-of-Distribution Classes
- URL: http://arxiv.org/abs/2210.06833v1
- Date: Thu, 13 Oct 2022 08:34:25 GMT
- Title: Exploiting Mixed Unlabeled Data for Detecting Samples of Seen and Unseen
Out-of-Distribution Classes
- Authors: Yi-Xuan Sun, Wei Wang
- Abstract summary: Out-of-Distribution (OOD) detection is essential in real-world applications, which has attracted increasing attention in recent years.
Most existing OOD detection methods require many labeled In-Distribution (ID) data, causing a heavy labeling cost.
In this paper, we focus on the more realistic scenario, where limited labeled data and abundant unlabeled data are available.
We propose the Adaptive In-Out-aware Learning (AIOL) method, in which we adaptively select potential ID and OOD samples from the mixed unlabeled data.
- Score: 5.623232537411766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-Distribution (OOD) detection is essential in real-world applications,
which has attracted increasing attention in recent years. However, most
existing OOD detection methods require many labeled In-Distribution (ID) data,
causing a heavy labeling cost. In this paper, we focus on the more realistic
scenario, where limited labeled data and abundant unlabeled data are available,
and these unlabeled data are mixed with ID and OOD samples. We propose the
Adaptive In-Out-aware Learning (AIOL) method, in which we employ the
appropriate temperature to adaptively select potential ID and OOD samples from
the mixed unlabeled data and consider the entropy over them for OOD detection.
Moreover, since the test data in realistic applications may contain OOD samples
whose classes are not in the mixed unlabeled data (we call them unseen OOD
classes), data augmentation techniques are brought into the method to further
improve the performance. The experiments are conducted on various benchmark
datasets, which demonstrate the superiority of our method.
Related papers
- When and How Does In-Distribution Label Help Out-of-Distribution Detection? [38.874518492468965]
This paper offers a formal understanding to theoretically delineate the impact of ID labels on OOD detection.
We employ a graph-theoretic approach, rigorously analyzing the separability of ID data from OOD data in a closed-form manner.
We present empirical results on both simulated and real datasets, validating theoretical guarantees and reinforcing our insights.
arXiv Detail & Related papers (2024-05-28T22:34:53Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data.
It is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning OOD patterns.
We propose a data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation.
arXiv Detail & Related papers (2023-11-06T16:26:52Z) - APP: Adaptive Prototypical Pseudo-Labeling for Few-shot OOD Detection [40.846633965439956]
This paper focuses on a few-shot OOD setting where there are only a few labeled IND data and massive unlabeled mixed data.
We propose an adaptive pseudo-labeling (APP) method for few-shot OOD detection.
arXiv Detail & Related papers (2023-10-20T09:48:52Z) - Semi-Supervised Object Detection with Uncurated Unlabeled Data for
Remote Sensing Images [16.660668160785615]
Semi-supervised object detection (SSOD) methods tackle this issue by generating pseudo-labels for the unlabeled data.
However, real-world situations introduce the possibility of out-of-distribution (OOD) samples being mixed with in-distribution (ID) samples within the unlabeled dataset.
We propose Open-Set Semi-Supervised Object Detection (OSSOD) on uncurated unlabeled data.
arXiv Detail & Related papers (2023-10-09T07:59:31Z) - Unsupervised Evaluation of Out-of-distribution Detection: A Data-centric
Perspective [55.45202687256175]
Out-of-distribution (OOD) detection methods assume that they have test ground truths, i.e., whether individual test samples are in-distribution (IND) or OOD.
In this paper, we are the first to introduce the unsupervised evaluation problem in OOD detection.
We propose three methods to compute Gscore as an unsupervised indicator of OOD detection performance.
arXiv Detail & Related papers (2023-02-16T13:34:35Z) - GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection [67.90365841083951]
We develop a new graph contrastive learning framework GOOD-D for detecting OOD graphs without using any ground-truth labels.
GOOD-D is able to capture the latent ID patterns and accurately detect OOD graphs based on the semantic inconsistency in different granularities.
As a pioneering work in unsupervised graph-level OOD detection, we build a comprehensive benchmark to compare our proposed approach with different state-of-the-art methods.
arXiv Detail & Related papers (2022-11-08T12:41:58Z) - Augmenting Softmax Information for Selective Classification with
Out-of-Distribution Data [7.221206118679026]
We show that existing post-hoc methods perform quite differently compared to when evaluated only on OOD detection.
We propose a novel method for SCOD, Softmax Information Retaining Combination (SIRC), that augments softmax-based confidence scores with feature-agnostic information.
Experiments on a wide variety of ImageNet-scale datasets and convolutional neural network architectures show that SIRC is able to consistently match or outperform the baseline for SCOD.
arXiv Detail & Related papers (2022-07-15T14:39:57Z) - They are Not Completely Useless: Towards Recycling Transferable
Unlabeled Data for Class-Mismatched Semi-Supervised Learning [61.46572463531167]
Semi-Supervised Learning (SSL) with mismatched classes deals with the problem that the classes-of-interests in the limited labeled data is only a subset of the classes in massive unlabeled data.
This paper proposes a "Transferable OOD data Recycling" (TOOR) method to enrich the information for conducting class-mismatched SSL.
arXiv Detail & Related papers (2020-11-27T02:29:35Z) - Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning [54.85397562961903]
Semi-supervised learning (SSL) has been proposed to leverage unlabeled data for training powerful models when only limited labeled data is available.
We address a more complex novel scenario named open-set SSL, where out-of-distribution (OOD) samples are contained in unlabeled data.
Our method achieves state-of-the-art results by successfully eliminating the effect of OOD samples.
arXiv Detail & Related papers (2020-07-22T10:33:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.