Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning
- URL: http://arxiv.org/abs/2007.11330v1
- Date: Wed, 22 Jul 2020 10:33:55 GMT
- Title: Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning
- Authors: Qing Yu, Daiki Ikami, Go Irie, Kiyoharu Aizawa
- Abstract summary: Semi-supervised learning (SSL) has been proposed to leverage unlabeled data for training powerful models when only limited labeled data is available.
We address a more complex novel scenario named open-set SSL, where out-of-distribution (OOD) samples are contained in unlabeled data.
Our method achieves state-of-the-art results by successfully eliminating the effect of OOD samples.
- Score: 54.85397562961903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning (SSL) has been proposed to leverage unlabeled data
for training powerful models when only limited labeled data is available. While
existing SSL methods assume that samples in the labeled and unlabeled data
share the classes of their samples, we address a more complex novel scenario
named open-set SSL, where out-of-distribution (OOD) samples are contained in
unlabeled data. Instead of training an OOD detector and SSL separately, we
propose a multi-task curriculum learning framework. First, to detect the OOD
samples in unlabeled data, we estimate the probability of the sample belonging
to OOD. We use a joint optimization framework, which updates the network
parameters and the OOD score alternately. Simultaneously, to achieve high
performance on the classification of in-distribution (ID) data, we select ID
samples in unlabeled data having small OOD scores, and use these data with
labeled data for training the deep neural networks to classify ID samples in a
semi-supervised manner. We conduct several experiments, and our method achieves
state-of-the-art results by successfully eliminating the effect of OOD samples.
Related papers
- SCOMatch: Alleviating Overtrusting in Open-set Semi-supervised Learning [25.508200663171625]
Open-set semi-supervised learning (OSSL) uses practical open-set unlabeled data.
Prior OSSL methods suffer from the tendency to overtrust the labeled ID data.
We propose SCOMatch, a novel OSSL that treats OOD samples as an additional class, forming a new SSL process.
arXiv Detail & Related papers (2024-09-26T03:47:34Z) - Exploration and Exploitation of Unlabeled Data for Open-Set
Semi-Supervised Learning [130.56124475528475]
We address a complex but practical scenario in semi-supervised learning (SSL) named open-set SSL, where unlabeled data contain both in-distribution (ID) and out-of-distribution (OOD) samples.
Our proposed method achieves state-of-the-art in several challenging benchmarks, and improves upon existing SSL methods even when ID samples are totally absent in unlabeled data.
arXiv Detail & Related papers (2023-06-30T14:25:35Z) - Exploiting Mixed Unlabeled Data for Detecting Samples of Seen and Unseen
Out-of-Distribution Classes [5.623232537411766]
Out-of-Distribution (OOD) detection is essential in real-world applications, which has attracted increasing attention in recent years.
Most existing OOD detection methods require many labeled In-Distribution (ID) data, causing a heavy labeling cost.
In this paper, we focus on the more realistic scenario, where limited labeled data and abundant unlabeled data are available.
We propose the Adaptive In-Out-aware Learning (AIOL) method, in which we adaptively select potential ID and OOD samples from the mixed unlabeled data.
arXiv Detail & Related papers (2022-10-13T08:34:25Z) - Pareto Optimization for Active Learning under Out-of-Distribution Data
Scenarios [79.02009938011447]
We propose a sampling scheme, which selects optimal subsets of unlabeled samples with fixed batch size from the unlabeled data pool.
Experimental results show its effectiveness on both classical Machine Learning (ML) and Deep Learning (DL) tasks.
arXiv Detail & Related papers (2022-07-04T04:11:44Z) - Pseudo-Labeled Auto-Curriculum Learning for Semi-Supervised Keypoint
Localization [88.74813798138466]
Localizing keypoints of an object is a basic visual problem.
Supervised learning of a keypoint localization network often requires a large amount of data.
We propose to automatically select reliable pseudo-labeled samples with a series of dynamic thresholds.
arXiv Detail & Related papers (2022-01-21T09:51:58Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
We propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning.
Our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-08-12T09:14:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.