Experimental Design for Multi-Channel Imaging via Task-Driven Feature Selection
- URL: http://arxiv.org/abs/2210.06891v4
- Date: Sun, 17 Mar 2024 11:45:52 GMT
- Title: Experimental Design for Multi-Channel Imaging via Task-Driven Feature Selection
- Authors: Stefano B. Blumberg, Paddy J. Slator, Daniel C. Alexander,
- Abstract summary: We present a new paradigm for experimental design that simultaneously optimize the design (set of image channels) and trains a machine-learning model to execute a user-specified image-analysis task.
Results show substantial improvement over classical experimental design, two recent application-specific methods within the new paradigm, and state-of-the-art approaches in supervised feature selection.
- Score: 2.662628670752034
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a data-driven, task-specific paradigm for experimental design, to shorten acquisition time, reduce costs, and accelerate the deployment of imaging devices. Current approaches in experimental design focus on model-parameter estimation and require specification of a particular model, whereas in imaging, other tasks may drive the design. Furthermore, such approaches often lead to intractable optimization problems in real-world imaging applications. Here we present a new paradigm for experimental design that simultaneously optimizes the design (set of image channels) and trains a machine-learning model to execute a user-specified image-analysis task. The approach obtains data densely-sampled over the measurement space (many image channels) for a small number of acquisitions, then identifies a subset of channels of prespecified size that best supports the task. We propose a method: TADRED for TAsk-DRiven Experimental Design in imaging, to identify the most informative channel-subset whilst simultaneously training a network to execute the task given the subset. Experiments demonstrate the potential of TADRED in diverse imaging applications: several clinically-relevant tasks in magnetic resonance imaging; and remote sensing and physiological applications of hyperspectral imaging. Results show substantial improvement over classical experimental design, two recent application-specific methods within the new paradigm, and state-of-the-art approaches in supervised feature selection. We anticipate further applications of our approach. Code is available: https://github.com/sbb-gh/experimental-design-multichannel
Related papers
- Unsupervised Reward-Driven Image Segmentation in Automated Scanning Transmission Electron Microscopy Experiments [0.22795086293129713]
Automated experiments in scanning transmission electron microscopy (STEM) require rapid image segmentation to optimize data representation for human interpretation, decision-making, site-selective spectroscopies, and atomic manipulation.
Here, we operationalize and benchmark a recently proposed reward-driven optimization workflow for on-the fly image analysis in STEM.
This unsupervised approach is much more robust, as it does not rely on human labels and is fully explainable.
arXiv Detail & Related papers (2024-09-19T04:51:13Z) - SpotActor: Training-Free Layout-Controlled Consistent Image Generation [43.2870588035256]
We present a new formalization of dual energy guidance with optimization in a dual semantic-latent space.
We propose a training-free pipeline, SpotActor, which features a layout-conditioned backward update stage and a consistent forward sampling stage.
The results prove that SpotActor fulfills the expectations of this task and showcases the potential for practical applications.
arXiv Detail & Related papers (2024-09-07T11:52:48Z) - Cardiac ultrasound simulation for autonomous ultrasound navigation [4.036497185262817]
We propose a method to generate large amounts of ultrasound images from other modalities and from arbitrary positions.
We present a novel simulation pipeline which uses segmentations from other modalities, an optimized data representation and GPU-accelerated Monte Carlo path tracing.
The proposed approach allows for fast and accurate patient-specific ultrasound image generation, and its usability for training networks for navigation-related tasks is demonstrated.
arXiv Detail & Related papers (2024-02-09T15:14:48Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Unifying Flow, Stereo and Depth Estimation [121.54066319299261]
We present a unified formulation and model for three motion and 3D perception tasks.
We formulate all three tasks as a unified dense correspondence matching problem.
Our model naturally enables cross-task transfer since the model architecture and parameters are shared across tasks.
arXiv Detail & Related papers (2022-11-10T18:59:54Z) - Single Stage Virtual Try-on via Deformable Attention Flows [51.70606454288168]
Virtual try-on aims to generate a photo-realistic fitting result given an in-shop garment and a reference person image.
We develop a novel Deformable Attention Flow (DAFlow) which applies the deformable attention scheme to multi-flow estimation.
Our proposed method achieves state-of-the-art performance both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-07-19T10:01:31Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Lifting-based variational multiclass segmentation algorithm: design,
convergence analysis, and implementation with applications in medical imaging [1.2499537119440245]
We propose, analyze and realize a variational multiclass segmentation scheme that partitions a given image into multiple regions exhibiting specific properties.
Our method determines multiple functions that encode the segmentation regions by minimizing an energy functional combining information from different channels.
Experimental results show that the proposed method performs well in various scenarios.
arXiv Detail & Related papers (2022-02-09T19:03:05Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
In this issue, we propose a novel image-specific convolutional modulation kernel (IKM)
We exploit the global contextual information of image or feature to generate an attention weight for adaptively modulating the convolutional kernels.
Experiments on single image super-resolution show that the proposed methods achieve superior performances over state-of-the-art methods.
arXiv Detail & Related papers (2021-11-16T11:05:10Z) - Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design [11.414086057582324]
We introduce Deep Adaptive Design (DAD), a method for amortizing the cost of performing sequential adaptive experiments.
We demonstrate that DAD successfully amortizes the process of experimental design, outperforming alternative strategies on a number of problems.
arXiv Detail & Related papers (2021-03-03T14:43:48Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.