論文の概要: Sentence Ambiguity, Grammaticality and Complexity Probes
- arxiv url: http://arxiv.org/abs/2210.06928v1
- Date: Thu, 13 Oct 2022 11:57:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 15:50:20.317628
- Title: Sentence Ambiguity, Grammaticality and Complexity Probes
- Title(参考訳): 文の曖昧性、文法性および複雑性プローブ
- Authors: Sunit Bhattacharya, Vil\'em Zouhar, Ond\v{r}ej Bojar
- Abstract要約: 事前学習された大きな言語モデルがあいまいさ、文法性、文の複雑さといった微妙な言語的特徴をどのように、どこで、どのように、どこで捉えているのかは不明確である。
本稿では,これらの特徴を自動分類し,その生存可能性と表現型間のパターンを比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is unclear whether, how and where large pre-trained language models
capture subtle linguistic traits like ambiguity, grammaticality and sentence
complexity. We present results of automatic classification of these traits and
compare their viability and patterns across representation types. We
demonstrate that template-based datasets with surface-level artifacts should
not be used for probing, careful comparisons with baselines should be done and
that t-SNE plots should not be used to determine the presence of a feature
among dense vectors representations. We also show how features might be highly
localized in the layers for these models and get lost in the upper layers.
- Abstract(参考訳): 事前学習された大きな言語モデルが曖昧さ、文法性、文の複雑さといった微妙な言語的特徴を捉えているかどうかは不明である。
本稿では,これらの特徴を自動分類し,その生存可能性と表現型間のパターンを比較した。
本研究では,表層アーティファクトを持つテンプレートベースのデータセットを探索に使用するべきではないこと,ベースラインとの比較を慎重に行うべきであること,高密度ベクトル表現中の特徴の特定にt-SNEプロットを使用するべきではないことを実証する。
また、これらのモデルのレイヤ内で機能が高度にローカライズされ、上位層で失われる可能性も示しています。
関連論文リスト
- Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - Are we describing the same sound? An analysis of word embedding spaces
of expressive piano performance [4.867952721052875]
表現力のあるピアノ演奏の特徴の領域における不確実性について検討する。
5つの埋め込みモデルとその類似性構造を基礎的真理に対応するために検証する。
埋め込みモデルの品質は、このタスクに対して大きなばらつきを示している。
論文 参考訳(メタデータ) (2023-12-31T12:20:03Z) - Knowledge Trees: Gradient Boosting Decision Trees on Knowledge Neurons
as Probing Classifier [0.0]
変圧器ニューラルネットワーク層の出力表現におけるロジスティック回帰は、言語モデルの構文特性の探索に最もよく用いられる。
本研究では, 変圧器層の出力表現におけるロジスティック回帰を用いた場合よりも, 知識ニューロン層での勾配向上決定木を用いた方が有利であることを示す。
論文 参考訳(メタデータ) (2023-12-17T15:37:03Z) - Morphological Inflection with Phonological Features [7.245355976804435]
本研究は,形態素モデルがサブキャラクタの音韻的特徴にアクセスできる様々な方法で得られる性能への影響について検討する。
我々は、浅いグラフ-音素マッピングを持つ言語に対する言語固有の文法を用いて、標準グラフデータから音素データを抽出する。
論文 参考訳(メタデータ) (2023-06-21T21:34:39Z) - Representation Of Lexical Stylistic Features In Language Models'
Embedding Space [28.60690854046176]
これらのスタイリスティックな概念のそれぞれに対して,少数のシードペアのみからベクトル表現を導出できることが示されている。
5つのデータセットで実験を行い、静的な埋め込みがこれらの特徴を単語やフレーズのレベルでより正確にエンコードすることを発見した。
単語レベルでの文脈化表現の低い性能は、ベクトル空間の異方性に起因する。
論文 参考訳(メタデータ) (2023-05-29T23:44:26Z) - A Multi-Grained Self-Interpretable Symbolic-Neural Model For
Single/Multi-Labeled Text Classification [29.075766631810595]
本稿では,テキストのクラスラベルを選挙区木から明示的に予測するシンボリック・ニューラルモデルを提案する。
構造化言語モデルが自己教師型で選挙区木を予測することを学ぶと、訓練データとして、原文と文レベルのラベルしか必要としない。
実験により,下流タスクにおける予測精度が向上できることが実証された。
論文 参考訳(メタデータ) (2023-03-06T03:25:43Z) - What Are You Token About? Dense Retrieval as Distributions Over the
Vocabulary [68.77983831618685]
本稿では,2つのエンコーダが生成するベクトル表現を,モデルの語彙空間に投影することで解釈する。
得られたプロジェクションは、リッチな意味情報を含み、それらの間の接続を描画し、スパース検索を行う。
論文 参考訳(メタデータ) (2022-12-20T16:03:25Z) - Finding Dataset Shortcuts with Grammar Induction [85.47127659108637]
我々は,NLPデータセットのショートカットの特徴付けと発見に確率文法を用いることを提案する。
具体的には、文脈自由文法を用いて文分類データセットのパターンをモデル化し、同期文脈自由文法を用いて文ペアを含むデータセットをモデル化する。
その結果得られた文法は、単純かつ高レベルの機能を含む、多くのデータセットで興味深いショートカット機能を示す。
論文 参考訳(メタデータ) (2022-10-20T19:54:11Z) - On Guiding Visual Attention with Language Specification [76.08326100891571]
注意をそらすのではなく,タスク関連機能に分類証拠を限定するためのアドバイスとして,ハイレベルな言語仕様を用いる。
この方法で空間的注意を監督することは、偏りのあるノイズのあるデータを用いた分類タスクの性能を向上させる。
論文 参考訳(メタデータ) (2022-02-17T22:40:19Z) - Learning Universal Representations from Word to Sentence [89.82415322763475]
この研究は普遍的な表現学習、すなわち一様ベクトル空間における言語単位の異なるレベルへの埋め込みを導入し、探求する。
本稿では, 単語, 句, 文の観点から, 類似したデータセットを構築するためのアプローチを提案する。
適切なトレーニング設定を組み込んだよく訓練されたトランスフォーマーモデルが、効果的に普遍的な表現が得られることを実証的に検証する。
論文 参考訳(メタデータ) (2020-09-10T03:53:18Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
キャラクタ関係モデリングのための物語テキスト理解のための2つのアプローチを提案する。
これらの関係の時間的進化は動的単語埋め込みによって説明され、時間とともに意味的変化を学ぶように設計されている。
最新の変換器モデルBERTに基づく教師付き学習手法を用いて文字間の静的な関係を検出する。
論文 参考訳(メタデータ) (2020-03-19T14:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。