論文の概要: Counterfactual Neural Temporal Point Process for Estimating Causal
Influence of Misinformation on Social Media
- arxiv url: http://arxiv.org/abs/2210.07518v1
- Date: Fri, 14 Oct 2022 05:00:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 16:00:08.807024
- Title: Counterfactual Neural Temporal Point Process for Estimating Causal
Influence of Misinformation on Social Media
- Title(参考訳): ソーシャルメディア上での誤情報の因果的影響を推定するための反事実的神経時間点過程
- Authors: Yizhou Zhang, Defu Cao, Yan Liu
- Abstract要約: 我々は、時間的視点プロセスの観点から、誤情報の因果効果をモデル化する因果的枠組みを構築した。
当社のモデルを、新型コロナウイルスワクチンに関するソーシャルメディア投稿とエンゲージメントの実際のデータセットに適用する。
- 参考スコア(独自算出の注目度): 10.685717620191102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed the rise of misinformation campaigns that spread
specific narratives on social media to manipulate public opinions on different
areas, such as politics and healthcare. Consequently, an effective and
efficient automatic methodology to estimate the influence of the misinformation
on user beliefs and activities is needed. However, existing works on
misinformation impact estimation either rely on small-scale psychological
experiments or can only discover the correlation between user behaviour and
misinformation. To address these issues, in this paper, we build up a causal
framework that model the causal effect of misinformation from the perspective
of temporal point process. To adapt the large-scale data, we design an
efficient yet precise way to estimate the Individual Treatment Effect(ITE) via
neural temporal point process and gaussian mixture models. Extensive
experiments on synthetic dataset verify the effectiveness and efficiency of our
model. We further apply our model on a real-world dataset of social media posts
and engagements about COVID-19 vaccines. The experimental results indicate that
our model recognized identifiable causal effect of misinformation that hurts
people's subjective emotions toward the vaccines.
- Abstract(参考訳): 近年では、ソーシャルメディア上で特定の物語を広め、政治や医療などさまざまな分野の世論を操る偽情報キャンペーンが盛んになっている。
これにより、誤報がユーザの信念や活動に与える影響を推定する効果的で効率的な自動手法が必要である。
しかし、誤情報影響推定に関する既存の研究は、小規模な心理実験に依存するか、あるいはユーザ行動と誤情報との相関を見いだすだけでよい。
本稿では,これらの問題に対処するため,時間的視点から誤情報の因果的影響をモデル化する因果的枠組みを構築した。
大規模データに適応するため,ニューラル・テンポポイント・プロセスとガウス混合モデルを用いて個別処理効果(ITE)を推定する方法を設計した。
合成データセットに関する広範な実験により,モデルの有効性と効率が検証された。
さらに、私たちのモデルを、新型コロナウイルスワクチンに関するソーシャルメディア投稿とエンゲージメントの実際のデータセットに適用する。
実験の結果,ワクチンに対する主観的感情を損なう誤情報の特定可能な因果効果をモデルが認識したことが示唆された。
関連論文リスト
- MisinfoEval: Generative AI in the Era of "Alternative Facts" [50.069577397751175]
本稿では,大規模言語モデル(LLM)に基づく誤情報介入の生成と評価を行うフレームワークを提案する。
本研究では,(1)誤情報介入の効果を測定するための模擬ソーシャルメディア環境の実験,(2)ユーザの人口動態や信念に合わせたパーソナライズされた説明を用いた第2の実験について述べる。
以上の結果から,LSMによる介入はユーザの行動の修正に極めて有効であることが確認された。
論文 参考訳(メタデータ) (2024-10-13T18:16:50Z) - Estimating Peer Direct and Indirect Effects in Observational Network Data [16.006409149421515]
本稿では、ピア直接効果とピア間接効果の両方を考慮し、個人自身の治療の効果を考慮に入れた一般的な設定を提案する。
注意機構を用いて、異なる隣人の影響を識別し、グラフニューラルネットワークによる高次隣人効果を探索する。
理論的には,ネットワークシステムにおける介入戦略を改善する可能性があり,ソーシャルネットワークや疫学などの分野にも応用できる。
論文 参考訳(メタデータ) (2024-08-21T10:02:05Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
社会デマトグラフィープロンプトは、特定の社会デマトグラフィープロファイルを持つ人間が与える答えに向けて、プロンプトベースのモデルの出力を操縦する技術である。
ソシオデマトグラフィー情報はモデル予測に影響を及ぼし、主観的NLPタスクにおけるゼロショット学習を改善するのに有用であることを示す。
論文 参考訳(メタデータ) (2023-09-13T15:42:06Z) - Zero-shot causal learning [64.9368337542558]
CaMLは因果メタラーニングフレームワークであり、各介入の効果をタスクとしてパーソナライズした予測を定式化する。
トレーニング時に存在しない新規介入のパーソナライズされた効果を予測することができることを示す。
論文 参考訳(メタデータ) (2023-01-28T20:14:11Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
クラウドソーシングを通じて、CausalDialogueという新しいデータセットをコンパイルし、拡張しました。
このデータセットは、有向非巡回グラフ(DAG)構造内に複数の因果効果対を含む。
ニューラル会話モデルの訓練における発話レベルにおける因果性の影響を高めるために,Exponential Average Treatment Effect (ExMATE) と呼ばれる因果性強化手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T18:31:50Z) - Data-Driven Causal Effect Estimation Based on Graphical Causal
Modelling: A Survey [30.115088044583953]
グラフィカル因果モデルを用いた因果効果推定におけるデータ駆動手法について検討する。
我々は、データ駆動因果効果推定が直面する課題を特定し、議論する。
このレビューは、より多くの研究者がより良いデータ駆動手法を設計する動機になることを期待しています。
論文 参考訳(メタデータ) (2022-08-20T03:25:58Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - VigDet: Knowledge Informed Neural Temporal Point Process for
Coordination Detection on Social Media [8.181808709549227]
ソーシャルメディア上の調整されたアカウントは 偽情報キャンペーンによって 世論に影響を与え 社会的成果を操るために使われます
本稿では、時間的論理や事前定義されたフィルタリング関数といった事前知識を用いて、ニューラル時間的点過程を組み込んだ協調検出フレームワークを提案する。
実世界のデータセットを用いた実験結果から, 教師なしと半教師なしの両方の設定におけるSOTAモデルと比較して, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2021-10-28T22:19:14Z) - Causal Effect Estimation using Variational Information Bottleneck [19.6760527269791]
因果推論とは、介入が適用されるときの因果関係における因果効果を推定することである。
変分情報ボトルネック(CEVIB)を用いて因果効果を推定する手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T13:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。