See Blue Sky: Deep Image Dehaze Using Paired and Unpaired Training
Images
- URL: http://arxiv.org/abs/2210.07594v1
- Date: Fri, 14 Oct 2022 07:45:33 GMT
- Title: See Blue Sky: Deep Image Dehaze Using Paired and Unpaired Training
Images
- Authors: Xiaoyan Zhang, Gaoyang Tang, Yingying Zhu and Qi Tian
- Abstract summary: We propose a cycle generative adversarial network to construct a novel end-to-end image dehaze model.
We adopt outdoor image datasets to train our model, which includes a set of real-world unpaired image dataset and a set of paired image dataset.
Based on the cycle structure, our model adds four different kinds of loss function to constrain the effect including adversarial loss, cycle consistency loss, photorealism loss and paired L1 loss.
- Score: 73.23687409870656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The issue of image haze removal has attracted wide attention in recent years.
However, most existing haze removal methods cannot restore the scene with clear
blue sky, since the color and texture information of the object in the original
haze image is insufficient. To remedy this, we propose a cycle generative
adversarial network to construct a novel end-to-end image dehaze model. We
adopt outdoor image datasets to train our model, which includes a set of
real-world unpaired image dataset and a set of paired image dataset to ensure
that the generated images are close to the real scene. Based on the cycle
structure, our model adds four different kinds of loss function to constrain
the effect including adversarial loss, cycle consistency loss, photorealism
loss and paired L1 loss. These four constraints can improve the overall quality
of such degraded images for better visual appeal and ensure reconstruction of
images to keep from distortion. The proposed model could remove the haze of
images and also restore the sky of images to be clean and blue (like captured
in a sunny weather).
Related papers
- Joint Conditional Diffusion Model for Image Restoration with Mixed Degradations [29.14467633167042]
We propose a new method for image restoration in adverse weather conditions.
We use a mixed degradation model based on atmosphere scattering model to guide the whole restoration process.
Experiments on both multi-weather and weather-specific datasets demonstrate the superiority of our method over state-of-the-art competing methods.
arXiv Detail & Related papers (2024-04-11T14:07:16Z) - Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
We propose to utilize exposure bracketing photography to unify image restoration and enhancement tasks.
Due to the difficulty in collecting real-world pairs, we suggest a solution that first pre-trains the model with synthetic paired data.
In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed.
arXiv Detail & Related papers (2024-01-01T14:14:35Z) - ScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural
Rendering [83.75284107397003]
We introduce ScatterNeRF, a neural rendering method which renders scenes and decomposes the fog-free background.
We propose a disentangled representation for the scattering volume and the scene objects, and learn the scene reconstruction with physics-inspired losses.
We validate our method by capturing multi-view In-the-Wild data and controlled captures in a large-scale fog chamber.
arXiv Detail & Related papers (2023-05-03T13:24:06Z) - Dehazing-NeRF: Neural Radiance Fields from Hazy Images [13.92247691561793]
We propose Dehazing-NeRF, a method that can recover clear NeRF from hazy image inputs.
Our method simulates the physical imaging process of hazy images using an atmospheric scattering model.
Our method outperforms the simple combination of single-image dehazing and NeRF on both image dehazing and novel view synthesis.
arXiv Detail & Related papers (2023-04-22T17:09:05Z) - Dual-Scale Single Image Dehazing Via Neural Augmentation [29.019279446792623]
A novel single image dehazing algorithm is introduced by combining model-based and data-driven approaches.
Results indicate that the proposed algorithm can remove haze well from real-world and synthetic hazy images.
arXiv Detail & Related papers (2022-09-13T11:56:03Z) - Learning to restore images degraded by atmospheric turbulence using
uncertainty [93.72048616001064]
Atmospheric turbulence can significantly degrade the quality of images acquired by long-range imaging systems.
We propose a deep learning-based approach for restring a single image degraded by atmospheric turbulence.
arXiv Detail & Related papers (2022-07-07T17:24:52Z) - Model-Based Single Image Deep Dehazing [20.39952114471173]
A novel single image dehazing algorithm is introduced by fusing model-based and data-driven approaches.
Experimental results indicate that the proposed algorithm can remove haze well from real-world and synthetic hazy images.
arXiv Detail & Related papers (2021-11-22T01:57:51Z) - Single image dehazing via combining the prior knowledge and CNNs [6.566615606042994]
An end-to-end system is proposed in this paper to reduce defects by combining the prior knowledge and deep learning method.
Experiments show that the proposed method achieves superior performance over existing methods.
arXiv Detail & Related papers (2021-11-10T14:18:25Z) - Nighttime Dehazing with a Synthetic Benchmark [147.21955799938115]
We propose a novel synthetic method called 3R to simulate nighttime hazy images from daytime clear images.
We generate realistic nighttime hazy images by sampling real-world light colors from a prior empirical distribution.
Experiment results demonstrate their superiority over state-of-the-art methods in terms of both image quality and runtime.
arXiv Detail & Related papers (2020-08-10T02:16:46Z) - Learning to Restore a Single Face Image Degraded by Atmospheric
Turbulence using CNNs [93.72048616001064]
Images captured under such condition suffer from a combination of geometric deformation and space varying blur.
We present a deep learning-based solution to the problem of restoring a turbulence-degraded face image.
arXiv Detail & Related papers (2020-07-16T15:25:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.