論文の概要: Automated dysgraphia detection by deep learning with SensoGrip
- arxiv url: http://arxiv.org/abs/2210.07659v1
- Date: Fri, 14 Oct 2022 09:21:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 18:14:08.277310
- Title: Automated dysgraphia detection by deep learning with SensoGrip
- Title(参考訳): SensoGripを用いた深層学習による失読自動検出
- Authors: Mugdim Bublin, Franz Werner, Andrea Kerschbaumer, Gernot Korak,
Sebastian Geyer, Lena Rettinger, Erna Schoenthaler
- Abstract要約: 画像診断の早期発見は、標的とした介入の早期開始を可能にする。
本研究は,SEMSスコア(0と12)をディープラーニングで予測し,手書き能力の微粒化について検討した。
提案手法は,手動による特徴抽出と選択を代えて,99%以上の精度とルート平均平方誤差を1より低くする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dysgraphia, a handwriting learning disability, has a serious negative impact
on children's academic results, daily life and overall wellbeing. Early
detection of dysgraphia allows for an early start of a targeted intervention.
Several studies have investigated dysgraphia detection by machine learning
algorithms using a digital tablet. However, these studies deployed classical
machine learning algorithms with manual feature extraction and selection as
well as binary classification: either dysgraphia or no dysgraphia. In this
work, we investigated fine grading of handwriting capabilities by predicting
SEMS score (between 0 and 12) with deep learning. Our approach provide accuracy
more than 99% and root mean square error lower than one, with automatic instead
of manual feature extraction and selection. Furthermore, we used smart pen
called SensoGrip, a pen equipped with sensors to capture handwriting dynamics,
instead of a tablet, enabling writing evaluation in more realistic scenarios.
- Abstract(参考訳): 筆跡学習障害であるDysgraphiaは、子どもの学術的結果、日常生活、全体的な幸福感に重大な影響を及ぼす。
画像診断の早期発見は、標的とした介入の早期開始を可能にする。
デジタルタブレットを用いた機械学習アルゴリズムによる失書検出に関する研究がいくつか行われている。
しかし、これらの研究は、古典的な機械学習アルゴリズムに手動の特徴抽出と選択、および二分分類を応用した。
本研究では,SEMSスコア(0と12)をディープラーニングで予測することにより,手書き能力の微調整を検討した。
提案手法は,手動による特徴抽出と選択の代わりに,99%以上の精度とルート平均平方誤差を1より低くする。
さらに、タブレットの代わりに手書きのダイナミクスをキャプチャするセンサーを備えた、SensoGripというスマートペンを使って、より現実的なシナリオでの文字評価を可能にしました。
関連論文リスト
- Towards Accessible Learning: Deep Learning-Based Potential Dysgraphia Detection and OCR for Potentially Dysgraphic Handwriting [1.9575346216959502]
図形障害(Dysgraphia)は、手書き能力に影響を与える学習障害である。
早期検出とモニタリングは、タイムリーなサポートと介入を提供するために不可欠である。
本研究では、ディープラーニング技術を用いて、ディジグラフィ検出と光学的文字認識の2つの課題に対処する。
論文 参考訳(メタデータ) (2024-11-18T13:28:26Z) - LLM-DetectAIve: a Tool for Fine-Grained Machine-Generated Text Detection [87.43727192273772]
テキストが人間の書いたものなのか、機械で作られたものなのかを判断するのは、しばしば困難である。
細粒度検出のためのLLM-DetectAIveを提案する。
i) 人書き、ii) 機械生成、(iii) 機械書、次いで機械書、(iv) 人書き、そして機械ポリッシュの4つのカテゴリをサポートする。
論文 参考訳(メタデータ) (2024-08-08T07:43:17Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
先進的なLarge Language Models (LLMs) とその特殊な変種を探索し、いくつかの方法でこの分野に寄与する。
トピックと検出性能の間に有意な相関関係が発見された。
これらの調査は、様々なトピックにまたがるこれらの検出手法の適応性と堅牢性に光を当てた。
論文 参考訳(メタデータ) (2023-12-20T10:53:53Z) - How word semantics and phonology affect handwriting of Alzheimer's
patients: a machine learning based analysis [20.36565712578267]
本研究は,アルツハイマー病患者の手書き書字に意味論と音韻論がどのような影響を及ぼすかを検討した。
我々は、6つの手書き作業から得られたデータを用いて、それぞれが以下のカテゴリの1つに属する単語をコピーする必要がある。
実験の結果,特徴選択により,単語の種類ごとに異なる特徴セットを導出できることがわかった。
論文 参考訳(メタデータ) (2023-07-06T13:35:06Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
生体内試験は、医療機器の毒性に対する動物実験の代替手段である。
人間の疲労は、深層学習を魅力的なものにするために、エラー作成に重要な役割を果たします。
我々は、不完全ラベルのシームレス反復半監督補正(SISSI)を提案する。
本手法は,物体検出に適応的な早期学習補正技術を提供する。
論文 参考訳(メタデータ) (2022-08-05T18:52:20Z) - Automated Systems For Diagnosis of Dysgraphia in Children: A Survey and
Novel Framework [2.326866956890798]
学習障害は主に読書、文章、数学などの基本的な学習スキルに干渉し、世界の子供の約10%に影響することが知られている。
神経発達障害としての運動能力の低下と運動調整は、書字の難しさの因果となりうる(図)
失読症の徴候や症状は、不規則な筆跡、筆記媒体の不適切な扱い、遅やかに書き直し、異常な手の位置などに限定されない。
論文 参考訳(メタデータ) (2022-06-27T04:44:34Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
最先端のブレイン・トゥ・テキストシステムは、ニューラルネットワークを使用して脳信号から直接言語を復号することに成功した。
本稿では,自然読解課題における語彙的脳波(EEG)-テキスト列列列復号化とゼロショット文感性分類に問題を拡張する。
脳波-テキストデコーディングで40.1%のBLEU-1スコア、ゼロショット脳波に基づく3次感情分類で55.6%のF1スコアを達成し、教師付きベースラインを著しく上回る結果となった。
論文 参考訳(メタデータ) (2021-12-05T21:57:22Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Deep Metric Learning with Locality Sensitive Angular Loss for
Self-Correcting Source Separation of Neural Spiking Signals [77.34726150561087]
本稿では, 深層学習に基づく手法を提案し, 自動掃除とロバスト分離フィルタの必要性に対処する。
本手法は, ソース分離した高密度表面筋電図記録に基づいて, 人工的に劣化したラベルセットを用いて検証する。
このアプローチにより、ニューラルネットワークは、信号のラベル付けの不完全な方法を使用して、神経生理学的時系列を正確に復号することができる。
論文 参考訳(メタデータ) (2021-10-13T21:51:56Z) - Digitizing Handwriting with a Sensor Pen: A Writer-Independent
Recognizer [0.2580765958706854]
本稿では,センサ付ペンを用いて,平紙に書かれた文字を認識できる文字非依存システムを提案する。
ペンは、ユーザーが印加した線形加速度、角速度、磁場、力を提供し、通常の紙に書きながらセンサーのアナログ信号を時間データに変換するディジタイザとして機能する。
本稿では,文字分類のための畳み込みニューラルネットワークモデルの結果を述べるとともに,本手法が実用的であり,文字に依存しない文字認識において有望な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-07-08T09:25:59Z) - Dyslexia and Dysgraphia prediction: A new machine learning approach [7.754230120409288]
失読症、失読症、失読症などの学習障害は、学術的な成果に干渉するが、学術的な時間を超える長い結果をもたらす。
このような障害を幼児期に評価するためには、子どもたちはテストのバッテリーを解く必要がある。
人間の専門家はこれらのテストにスコアを付け、子どもが特定の教育戦略を必要とするかどうかをスコアに基づいて決定する。
本稿では,人工知能がこの評価の自動化にどう役立つかを検討する。
論文 参考訳(メタデータ) (2020-04-15T09:31:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。