論文の概要: General Classification of Entanglement Using Machine Learning
- arxiv url: http://arxiv.org/abs/2210.07711v1
- Date: Fri, 14 Oct 2022 11:24:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-22 14:19:34.924182
- Title: General Classification of Entanglement Using Machine Learning
- Title(参考訳): 機械学習を用いた絡み合いの一般分類
- Authors: F. El Ayachi and M. El Baz
- Abstract要約: 量子ビット系における多重粒子の絡み合いの分類は、純粋および混合状態に対して導入される。
我々は、現在の機械学習とディープラーニング技術を使用して、各ランにおける異なるタイプの絡み合いの量を計算することなく、2、3、4キュービットのランダムな状態を自動分類する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A classification of multipartite entanglement in qubit systems is introduced
for pure and mixed states. The classification is based on the robustness of the
said entanglement against partial trace operation. Then we use current machine
learning and deep learning techniques to automatically classify a random state
of two, three and four qubits without the need to compute the amount of the
different types of entanglement in each run; rather this is done only in the
learning process. The technique shows high, near perfect, accuracy in the case
of pure states. As expected, this accuracy drops, more or less, when dealing
with mixed states and when increasing the number of parties involved.
- Abstract(参考訳): 純および混合状態に対して、キュービット系における多重粒子の絡み合いの分類を導入する。
この分類は、部分的トレース操作に対する前記絡み合いの堅牢性に基づいている。
次に、現在の機械学習とディープラーニング技術を用いて、各実行中の異なる種類の絡み合いの量を計算することなく、2、3、および4つの量子ビットのランダムな状態を自動的に分類する。
この手法は純粋な状態の場合、高い精度、ほぼ完全な精度を示す。
予想通り、この精度は多かれ少なかれ混合状態を扱う場合や関係者数を増やす場合に低下する。
関連論文リスト
- No One Left Behind: Improving the Worst Categories in Long-Tailed
Learning [29.89394406438639]
このような評価設定の下では、いくつかのカテゴリは必然的に犠牲にされます。
多様な手法に適用可能な簡易なプラグイン法を提案する。
論文 参考訳(メタデータ) (2023-03-07T03:24:54Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
本稿では,アンサンブル分類とエビデンス理論を用いた新しい検出手法を提案する。
固体アンサンブル分類器を構築するためのプール選択戦略が提示される。
我々は異常検出手法の不確実性を利用する。
論文 参考訳(メタデータ) (2022-12-23T00:50:41Z) - Engineering the Neural Automatic Passenger Counter [0.0]
我々は、信頼性、性能、そして品質のカウントを向上させるために、機械学習の様々な側面を探求し、活用する。
アンサンブル量子化のようなアグリゲーション技術がバイアスを減少させる方法を示し、その結果の全体的拡散について考察する。
論文 参考訳(メタデータ) (2022-03-02T14:56:11Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Benign Overfitting in Multiclass Classification: All Roads Lead to
Interpolation [39.02017410837255]
多クラス線形分類における良性オーバーフィッティングについて検討する。
分離可能なデータに対する以下のトレーニングアルゴリズムを検討する。
MNI分類器の精度に基づいた新しい境界を導出する。
論文 参考訳(メタデータ) (2021-06-21T05:34:36Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
コントラスト学習(Contrastive Learning)は、ラベルのないデータから構築された分類タスクを解決するためにモデルを訓練する自己指導型の手法のファミリーである。
拡散の場合,小~中距離間隔の遷移カーネルを適切に構築したコントラスト学習タスクを用いて推定できることが示される。
論文 参考訳(メタデータ) (2021-03-03T23:06:47Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Predicting Classification Accuracy When Adding New Unobserved Classes [8.325327265120283]
そこで本研究では,より大規模で未観測のクラスに対して,期待する精度を推定するために,分類器の性能をどのように利用することができるかを検討する。
ニューラルネットワークに基づく頑健なアルゴリズム "CleaneX" を定式化し,任意のサイズのクラスに対して,そのような分類器の精度を推定する。
論文 参考訳(メタデータ) (2020-10-28T14:37:25Z) - Quantum Ensemble for Classification [2.064612766965483]
機械学習のパフォーマンスを改善する強力な方法は、複数のモデルの予測を組み合わせたアンサンブルを構築することである。
量子重ね合わせ,絡み合い,干渉を利用して分類モデルのアンサンブルを構築する新しい量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-02T11:26:54Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
本稿では,エンド・ツー・エンドの設定において,分類ネットワークと融合可能な効率的なローカライゼーションモジュールを提案する。
我々は,CUB200-2011,Stanford Cars,FGVC-Aircraftの3つのベンチマークデータセット上で,新しいモデルを評価する。
論文 参考訳(メタデータ) (2020-05-11T14:07:06Z) - Embedding Propagation: Smoother Manifold for Few-Shot Classification [131.81692677836202]
本稿では, 組込み伝搬を非教師なし非パラメトリック正規化器として, 数ショット分類における多様体平滑化に用いることを提案する。
埋め込み伝播がより滑らかな埋め込み多様体を生み出すことを実証的に示す。
複数の半教師付き学習シナリオにおいて,埋め込み伝搬によりモデルの精度が最大16%向上することを示す。
論文 参考訳(メタデータ) (2020-03-09T13:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。