論文の概要: Inductive Logical Query Answering in Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2210.08008v1
- Date: Thu, 13 Oct 2022 03:53:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 16:39:50.379469
- Title: Inductive Logical Query Answering in Knowledge Graphs
- Title(参考訳): 知識グラフにおける帰納的論理クエリ応答
- Authors: Mikhail Galkin, Zhaocheng Zhu, Hongyu Ren, Jian Tang
- Abstract要約: 本研究では、新しいエンティティを含むグラフ上で推論を行う帰納的クエリ応答タスクについて検討する。
グラフニューラルネットワーク(GNN)を用いた帰納的ノードと関係構造表現の2つのメカニズムを考案する。
実験により、帰納的モデルは、学習ノードよりも最大500%大きいグラフに一般化した未確認ノードに対して、推論時間で論理的推論を行うことができることを示した。
- 参考スコア(独自算出の注目度): 30.220508024471595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Formulating and answering logical queries is a standard communication
interface for knowledge graphs (KGs). Alleviating the notorious incompleteness
of real-world KGs, neural methods achieved impressive results in link
prediction and complex query answering tasks by learning representations of
entities, relations, and queries. Still, most existing query answering methods
rely on transductive entity embeddings and cannot generalize to KGs containing
new entities without retraining the entity embeddings. In this work, we study
the inductive query answering task where inference is performed on a graph
containing new entities with queries over both seen and unseen entities. To
this end, we devise two mechanisms leveraging inductive node and relational
structure representations powered by graph neural networks (GNNs).
Experimentally, we show that inductive models are able to perform logical
reasoning at inference time over unseen nodes generalizing to graphs up to 500%
larger than training ones. Exploring the efficiency--effectiveness trade-off,
we find the inductive relational structure representation method generally
achieves higher performance, while the inductive node representation method is
able to answer complex queries in the inference-only regime without any
training on queries and scales to graphs of millions of nodes. Code is
available at https://github.com/DeepGraphLearning/InductiveQE.
- Abstract(参考訳): 論理的クエリの定式化と応答は知識グラフ(KG)の標準的な通信インターフェースである。
現実世界のkgsの不完全さを緩和し、ニューラルネットワークは、エンティティ、リレーション、クエリの表現を学習することで、リンク予測と複雑なクエリ応答タスクで印象的な結果を得た。
それでも、既存のクエリ応答メソッドのほとんどは、トランスダクティブエンティティの埋め込みに依存しており、エンティティの埋め込みを再トレーニングすることなく、新しいエンティティを含むKGに一般化することはできない。
本研究では,目に見えるエンティティと見えないエンティティの両方にクエリを持つ新しいエンティティを含むグラフ上で推論を行う帰納的クエリ応答タスクについて検討する。
そこで我々は,グラフニューラルネットワーク(GNN)を用いた帰納的ノードと関係構造表現の2つのメカニズムを考案した。
実験により,インダクティブモデルでは,学習ノードよりも最大500%大きいグラフに一般化した未知ノード上で,推論時に論理的推論を行うことができることを示した。
効率効率-有効性トレードオフを探索すると、帰納的関係構造表現法は一般に高い性能を達成するのに対し、帰納的ノード表現法は、数百万のノードのグラフに対するクエリやスケールのトレーニングをすることなく、推論のみの体系における複雑なクエリに答えることができる。
コードはhttps://github.com/DeepGraphLearning/InductiveQEで入手できる。
関連論文リスト
- One Model, Any Conjunctive Query: Graph Neural Networks for Answering Complex Queries over Knowledge Graphs [7.34044245579928]
我々は,知識グラフ上の任意の共役クエリに対する回答を分類可能なグラフニューラルネットワークモデルであるAnyCQを提案する。
我々は、AnyCQが任意の構造を持つ大規模クエリに一般化できることを示し、既存のアプローチが失敗するサンプルに対する回答を確実に分類し、検索する。
論文 参考訳(メタデータ) (2024-09-21T00:30:44Z) - EntailE: Introducing Textual Entailment in Commonsense Knowledge Graph
Completion [54.12709176438264]
Commonsense knowledge graph(CSKG)は、名前付きエンティティ、短いフレーズ、イベントをノードとして表現するために自由形式のテキストを使用する。
現在の手法では意味的類似性を利用してグラフ密度を増大させるが、ノードとその関係のセマンティックな妥当性は未探索である。
そこで本研究では,CSKGノード間の暗黙的な包絡関係を見つけるために,テキストエンテーメントを導入し,同じ概念クラス内のサブグラフ接続ノードを効果的に密度化することを提案する。
論文 参考訳(メタデータ) (2024-02-15T02:27:23Z) - Graph Condensation for Inductive Node Representation Learning [59.76374128436873]
マッピング対応グラフ凝縮法(MCond)を提案する。
MCondは、帰納的表現学習のための合成グラフに新しいノードを統合する。
Redditデータセットでは、最大121.5倍の推論スピードアップと55.9倍のストレージ要求の削減を実現している。
論文 参考訳(メタデータ) (2023-07-29T12:11:14Z) - Query Structure Modeling for Inductive Logical Reasoning Over Knowledge
Graphs [67.043747188954]
KGに対する帰納的論理的推論のための構造モデル付きテキスト符号化フレームワークを提案する。
線形化されたクエリ構造とエンティティを、事前訓練された言語モデルを使ってエンコードして、回答を見つける。
2つの帰納的論理推論データセットと3つの帰納的推論データセットについて実験を行った。
論文 参考訳(メタデータ) (2023-05-23T01:25:29Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
本稿では,ニューラルネットワーク演算子から知識グラフの埋め込みを分解する,複雑な問合せ応答のためのフレームワークを提案する。
クエリグラフの上に、局所的な原子式上のワンホップ推論とグローバル論理的推論を結びつける論理メッセージパッシングニューラルネットワーク(LMPNN)を提案する。
我々のアプローチは、最先端のニューラルCQAモデルをもたらす。
論文 参考訳(メタデータ) (2023-01-21T02:34:06Z) - Neural-Symbolic Models for Logical Queries on Knowledge Graphs [17.290758383645567]
両世界の利点を享受するニューラルシンボリックモデルであるグラフニューラルネットワーククエリ実行器(GNN-QE)を提案する。
GNN-QEは複雑なFOLクエリを、ファジィ集合上の関係投影と論理演算に分解する。
3つのデータセットの実験により、GNN-QEはFOLクエリに応答する以前の最先端モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-05-16T18:39:04Z) - Why Settle for Just One? Extending EL++ Ontology Embeddings with
Many-to-Many Relationships [2.599882743586164]
知識グラフ埋め込みは、知識グラフの実体と関係の低次元表現を提供する。
この方向の最近の取り組みは、EL++と呼ばれる記述(記述のための論理論理)への埋め込みの学習である。
我々は、埋め込み表現を学習しながら、多対多の関係を考慮できる、シンプルで効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2021-10-20T13:23:18Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。