Eliciting Compatible Demonstrations for Multi-Human Imitation Learning
- URL: http://arxiv.org/abs/2210.08073v1
- Date: Fri, 14 Oct 2022 19:37:55 GMT
- Title: Eliciting Compatible Demonstrations for Multi-Human Imitation Learning
- Authors: Kanishk Gandhi, Siddharth Karamcheti, Madeline Liao, Dorsa Sadigh
- Abstract summary: Imitation learning from human-provided demonstrations is a strong approach for learning policies for robot manipulation.
Natural human behavior has a great deal of heterogeneity, with several optimal ways to demonstrate a task.
This mismatch presents a problem for interactive imitation learning, where sequences of users improve on a policy by iteratively collecting new, possibly conflicting demonstrations.
We show that we can both identify incompatible demonstrations via post-hoc filtering, and apply our compatibility measure to actively elicit compatible demonstrations from new users.
- Score: 16.11830547863391
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imitation learning from human-provided demonstrations is a strong approach
for learning policies for robot manipulation. While the ideal dataset for
imitation learning is homogenous and low-variance -- reflecting a single,
optimal method for performing a task -- natural human behavior has a great deal
of heterogeneity, with several optimal ways to demonstrate a task. This
multimodality is inconsequential to human users, with task variations
manifesting as subconscious choices; for example, reaching down, then across to
grasp an object, versus reaching across, then down. Yet, this mismatch presents
a problem for interactive imitation learning, where sequences of users improve
on a policy by iteratively collecting new, possibly conflicting demonstrations.
To combat this problem of demonstrator incompatibility, this work designs an
approach for 1) measuring the compatibility of a new demonstration given a base
policy, and 2) actively eliciting more compatible demonstrations from new
users. Across two simulation tasks requiring long-horizon, dexterous
manipulation and a real-world "food plating" task with a Franka Emika Panda
arm, we show that we can both identify incompatible demonstrations via post-hoc
filtering, and apply our compatibility measure to actively elicit compatible
demonstrations from new users, leading to improved task success rates across
simulated and real environments.
Related papers
- AdaDemo: Data-Efficient Demonstration Expansion for Generalist Robotic Agent [75.91274222142079]
In this study, we aim to scale up demonstrations in a data-efficient way to facilitate the learning of generalist robotic agents.
AdaDemo is a framework designed to improve multi-task policy learning by actively and continually expanding the demonstration dataset.
arXiv Detail & Related papers (2024-04-11T01:59:29Z) - Learning to Discern: Imitating Heterogeneous Human Demonstrations with
Preference and Representation Learning [12.4468604987226]
This paper introduces Learning to Discern (L2D), an offline imitation learning framework for learning from demonstrations with diverse quality and style.
We show that L2D can effectively assess and learn from varying demonstrations, thereby leading to improved policy performance across a range of tasks in both simulations and on a physical robot.
arXiv Detail & Related papers (2023-10-22T06:08:55Z) - Skill Disentanglement for Imitation Learning from Suboptimal
Demonstrations [60.241144377865716]
We consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set.
We propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills.
arXiv Detail & Related papers (2023-06-13T17:24:37Z) - Out-of-Dynamics Imitation Learning from Multimodal Demonstrations [68.46458026983409]
We study out-of-dynamics imitation learning (OOD-IL), which relaxes the assumption to that the demonstrator and the imitator have the same state spaces.
OOD-IL enables imitation learning to utilize demonstrations from a wide range of demonstrators but introduces a new challenge.
We develop a better transferability measurement to tackle this newly-emerged challenge.
arXiv Detail & Related papers (2022-11-13T07:45:06Z) - Inferring Versatile Behavior from Demonstrations by Matching Geometric
Descriptors [72.62423312645953]
Humans intuitively solve tasks in versatile ways, varying their behavior in terms of trajectory-based planning and for individual steps.
Current Imitation Learning algorithms often only consider unimodal expert demonstrations and act in a state-action-based setting.
Instead, we combine a mixture of movement primitives with a distribution matching objective to learn versatile behaviors that match the expert's behavior and versatility.
arXiv Detail & Related papers (2022-10-17T16:42:59Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - Learning to Shift Attention for Motion Generation [55.61994201686024]
One challenge of motion generation using robot learning from demonstration techniques is that human demonstrations follow a distribution with multiple modes for one task query.
Previous approaches fail to capture all modes or tend to average modes of the demonstrations and thus generate invalid trajectories.
We propose a motion generation model with extrapolation ability to overcome this problem.
arXiv Detail & Related papers (2021-02-24T09:07:52Z) - Reinforcement Learning with Supervision from Noisy Demonstrations [38.00968774243178]
We propose a novel framework to adaptively learn the policy by jointly interacting with the environment and exploiting the expert demonstrations.
Experimental results in various environments with multiple popular reinforcement learning algorithms show that the proposed approach can learn robustly with noisy demonstrations.
arXiv Detail & Related papers (2020-06-14T06:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.