Curating Demonstrations using Online Experience
- URL: http://arxiv.org/abs/2503.03707v1
- Date: Wed, 05 Mar 2025 17:58:16 GMT
- Title: Curating Demonstrations using Online Experience
- Authors: Annie S. Chen, Alec M. Lessing, Yuejiang Liu, Chelsea Finn,
- Abstract summary: We show that Demo-SCORE can effectively identify suboptimal demonstrations without manual curation.<n>Demo-SCORE achieves over 15-35% higher absolute success rate in the resulting policy compared to the base policy trained with all original demonstrations.
- Score: 52.59275477573012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many robot demonstration datasets contain heterogeneous demonstrations of varying quality. This heterogeneity may benefit policy pre-training, but can hinder robot performance when used with a final imitation learning objective. In particular, some strategies in the data may be less reliable than others or may be underrepresented in the data, leading to poor performance when such strategies are sampled at test time. Moreover, such unreliable or underrepresented strategies can be difficult even for people to discern, and sifting through demonstration datasets is time-consuming and costly. On the other hand, policy performance when trained on such demonstrations can reflect the reliability of different strategies. We thus propose for robots to self-curate based on online robot experience (Demo-SCORE). More specifically, we train and cross-validate a classifier to discern successful policy roll-outs from unsuccessful ones and use the classifier to filter heterogeneous demonstration datasets. Our experiments in simulation and the real world show that Demo-SCORE can effectively identify suboptimal demonstrations without manual curation. Notably, Demo-SCORE achieves over 15-35% higher absolute success rate in the resulting policy compared to the base policy trained with all original demonstrations.
Related papers
- Imitation Learning with Precisely Labeled Human Demonstrations [0.0]
This work builds on prior studies that demonstrate the viability of using hand-held grippers for efficient data collection.
We leverage the user's control over the gripper's appearance--specifically by assigning it a unique, easily segmentable color--to enable precise end-effector pose estimation.
We show in simulation that precisely labeled human demonstrations on their own allow policies to reach on average 88.1% of the performance of using robot demonstrations.
arXiv Detail & Related papers (2025-04-18T17:12:00Z) - AdaDemo: Data-Efficient Demonstration Expansion for Generalist Robotic Agent [75.91274222142079]
In this study, we aim to scale up demonstrations in a data-efficient way to facilitate the learning of generalist robotic agents.
AdaDemo is a framework designed to improve multi-task policy learning by actively and continually expanding the demonstration dataset.
arXiv Detail & Related papers (2024-04-11T01:59:29Z) - Learning to Discern: Imitating Heterogeneous Human Demonstrations with
Preference and Representation Learning [12.4468604987226]
This paper introduces Learning to Discern (L2D), an offline imitation learning framework for learning from demonstrations with diverse quality and style.
We show that L2D can effectively assess and learn from varying demonstrations, thereby leading to improved policy performance across a range of tasks in both simulations and on a physical robot.
arXiv Detail & Related papers (2023-10-22T06:08:55Z) - Unlabeled Imperfect Demonstrations in Adversarial Imitation Learning [48.595574101874575]
In the real world, expert demonstrations are more likely to be imperfect.
A positive-unlabeled adversarial imitation learning algorithm is developed.
Agent policy will be optimized to cheat the discriminator and produce trajectories similar to those optimal expert demonstrations.
arXiv Detail & Related papers (2023-02-13T11:26:44Z) - Imitation Learning by Estimating Expertise of Demonstrators [92.20185160311036]
We show that unsupervised learning over demonstrator expertise can lead to a consistent boost in the performance of imitation learning algorithms.
We develop and optimize a joint model over a learned policy and expertise levels of the demonstrators.
We illustrate our findings on real-robotic continuous control tasks from Robomimic and discrete environments such as MiniGrid and chess.
arXiv Detail & Related papers (2022-02-02T21:23:19Z) - Learning Feasibility to Imitate Demonstrators with Different Dynamics [23.239058855103067]
The goal of learning from demonstrations is to learn a policy for an agent (imitator) by mimicking the behavior in the demonstrations.
We learn a feasibility metric that captures the likelihood of a demonstration being feasible by the imitator.
Our experiments on four simulated environments and on a real robot show that the policy learned with our approach achieves a higher expected return than prior works.
arXiv Detail & Related papers (2021-10-28T14:15:47Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Learning from Imperfect Demonstrations from Agents with Varying Dynamics [29.94164262533282]
We develop a metric composed of a feasibility score and an optimality score to measure how useful a demonstration is for imitation learning.
Our experiments on four environments in simulation and on a real robot show improved learned policies with higher expected return.
arXiv Detail & Related papers (2021-03-10T07:39:38Z) - Robust Maximum Entropy Behavior Cloning [15.713997170792842]
Imitation learning (IL) algorithms use expert demonstrations to learn a specific task.
Most of the existing approaches assume that all expert demonstrations are reliable and trustworthy, but what if there exist some adversarial demonstrations among the given data-set?
We propose a novel general frame-work to directly generate a policy from demonstrations that autonomously detect the adversarial demonstrations and exclude them from the data set.
arXiv Detail & Related papers (2021-01-04T22:08:46Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.