論文の概要: ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model
- arxiv url: http://arxiv.org/abs/2210.08151v1
- Date: Sat, 15 Oct 2022 00:42:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 20:03:12.092344
- Title: ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model
- Title(参考訳): ProtoVAE: 信頼できる自己説明可能な原型変分モデル
- Authors: Srishti Gautam, Ahcene Boubekki, Stine Hansen, Suaiba Amina
Salahuddin, Robert Jenssen, Marina MC H\"ohne, Michael Kampffmeyer
- Abstract要約: ProtoVAEは、クラス固有のプロトタイプをエンドツーエンドで学習する変分自動エンコーダベースのフレームワークである。
表現空間を正規化し、正則性制約を導入することにより、信頼性と多様性を強制する。
- 参考スコア(独自算出の注目度): 18.537838366377915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The need for interpretable models has fostered the development of
self-explainable classifiers. Prior approaches are either based on multi-stage
optimization schemes, impacting the predictive performance of the model, or
produce explanations that are not transparent, trustworthy or do not capture
the diversity of the data. To address these shortcomings, we propose ProtoVAE,
a variational autoencoder-based framework that learns class-specific prototypes
in an end-to-end manner and enforces trustworthiness and diversity by
regularizing the representation space and introducing an orthonormality
constraint. Finally, the model is designed to be transparent by directly
incorporating the prototypes into the decision process. Extensive comparisons
with previous self-explainable approaches demonstrate the superiority of
ProtoVAE, highlighting its ability to generate trustworthy and diverse
explanations, while not degrading predictive performance.
- Abstract(参考訳): 解釈可能なモデルの必要性は、自己説明可能な分類器の開発を促進する。
従来のアプローチは、多段階最適化スキームに基づいており、モデルの予測性能に影響を与えるか、あるいは、透明でない、信頼できる、あるいはデータの多様性を捉えない説明を生成する。
これらの欠点に対処するために,クラス固有のプロトタイプをエンドツーエンドで学習し,表現空間を正規化し,正規性制約を導入することで信頼性と多様性を強制する変分オートエンコーダベースのフレームワークであるProtoVAEを提案する。
最後に、モデルは、プロトタイプを直接決定プロセスに組み込むことで透明になるように設計されている。
従来の自己説明可能なアプローチと比較して、ProtoVAEの優位性を示し、予測性能を低下させることなく、信頼できる多様な説明を生成する能力を強調した。
関連論文リスト
- FedSA: A Unified Representation Learning via Semantic Anchors for Prototype-based Federated Learning [4.244188591221394]
本稿では,FedSA(Federated Learning via Semantic Anchors)という新しいフレームワークを提案する。
FedSAは、様々な分類タスクにおいて、既存のプロトタイプベースのFLメソッドを著しく上回っている。
論文 参考訳(メタデータ) (2025-01-09T16:10:03Z) - Interpret the Internal States of Recommendation Model with Sparse Autoencoder [26.021277330699963]
RecSAEは、レコメンデーションモデルの内部状態を解釈するための、自動で一般化可能な探索手法である。
我々は、推薦モデルの内部アクティベーションを再構築するために、疎度制約付きオートエンコーダを訓練する。
我々は、潜在活性化と入力項目列の関係に基づき、概念辞書の構築を自動化した。
論文 参考訳(メタデータ) (2024-11-09T08:22:31Z) - Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
本稿では,豊富な生成前駆体を含む事前学習型安定拡散(SD)モデルと,階層的表現を統合可能な統一型ヘッド(Uヘッド)と,識別前駆体を提供する適応型専門家からなる,シンプルで効果的なフレームワークを提案する。
包括的調査では、異なる時間ステップで潜伏変数に隠された知覚の粒度や様々なU-netステージなど、バーマスの潜在的な特性が明らかになった。
有望な結果は,有望な学習者としての拡散モデルの可能性を示し,情報的かつ堅牢な視覚表現の確立にその意義を定めている。
論文 参考訳(メタデータ) (2024-01-29T10:36:57Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
本稿では,Transferable Prototype Learning (TCPL) という,本質的に解釈可能な手法を提案する。
この目的を達成するために、ソースドメインからターゲットドメインにカテゴリの基本概念を転送する階層的なプロトタイプモジュールを設計し、基礎となる推論プロセスを説明するためにドメイン共有プロトタイプを学習する。
総合的な実験により,提案手法は有効かつ直感的な説明を提供するだけでなく,従来の最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-12T06:36:41Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
クロスモーダル検索手法は、共通表現空間を共同学習することにより、視覚と言語モダリティの類似性関係を構築する。
しかし、この予測は、低品質なデータ、例えば、腐敗した画像、速いペースの動画、詳細でないテキストによって引き起こされるアレタリック不確実性のために、しばしば信頼性が低い。
本稿では, 原型に基づくAleatoric Uncertainity Quantification (PAU) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:41:19Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
概念ベースの解釈可能性手法をNLPに拡張するための完全なフレームワークを提案する。
出力予測が大幅に変化する特徴を最適化する。
本手法は, ベースラインと比較して, 予測的影響, ユーザビリティ, 忠実度に関する優れた結果が得られる。
論文 参考訳(メタデータ) (2023-05-03T14:48:27Z) - Learning to Select Prototypical Parts for Interpretable Sequential Data
Modeling [7.376829794171344]
本稿では,原型概念の線形結合を用いた自己説明選択モデル(SESM)を提案する。
より良い解釈可能性を得るために,多様性,安定性,局所性など,複数の制約をトレーニング対象として設計する。
論文 参考訳(メタデータ) (2022-12-07T01:42:47Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - An Identifiable Double VAE For Disentangled Representations [24.963285614606665]
本稿では, 識別可能性に関する理論的保証を備えた, VAEに基づく新しい生成モデルを提案する。
我々は,最適表現を学習することで,潜伏者に対する条件付き事前情報を得る。
実験結果は,最先端のアプローチに対して優れた性能を示す。
論文 参考訳(メタデータ) (2020-10-19T09:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。