A Secure Multiparty Quantum Least Common Multiple Computation Protocol
- URL: http://arxiv.org/abs/2210.08165v2
- Date: Wed, 26 Jul 2023 10:52:57 GMT
- Title: A Secure Multiparty Quantum Least Common Multiple Computation Protocol
- Authors: Zixian Li and Wenjie Liu
- Abstract summary: We present a secure multiparty computation protocol for least common multiple (LCM) based on Shor's quantum period-finding algorithm (QPA)
Since QPA is a probabilistic algorithm, we also propose a one-vote-down vote protocol based on the existing secure multi-party quantum summation protocol.
- Score: 1.4049484216292827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a secure multiparty computation (SMC) protocol for
least common multiple (LCM) based on Shor's quantum period-finding algorithm
(QPA). Our protocol is based on the following principle: the connection of
multiple periodic functions is also a periodic function whose period is exactly
the least common multiple of all small periods. Since QPA is a probabilistic
algorithm, we also propose a one-vote-down vote protocol based on the existing
secure multi-party quantum summation protocol, which is used to verify the
results of the proposed LCM protocol. Security analysis shows that under the
semi-honest model, the proposed protocol is secure with high probability, while
the computational consumption remains at polynomial complexity. The protocol
proposed in this paper solves the problem of efficient and secure multiparty
computation of LCM, demonstrating quantum computation potential.
Related papers
- Secure multiparty quantum computations for greatest common divisor and
private set intersection [2.5204420653245245]
We present a secure multiparty quantum computation (MPQC) for computing greatest common divisor (GCD) based on quantum multiparty private set union (PSU) by Liu, Yang, and Li.
arXiv Detail & Related papers (2023-03-30T07:33:30Z) - Asymmetric Quantum Secure Multi-Party Computation With Weak Clients
Against Dishonest Majority [0.0]
We introduce a protocol that lifts classical SMPC to quantum SMPC in a composably and statistically secure way.
Unlike previous quantum SMPC protocols, our proposal only requires very limited quantum resources from all but one party.
arXiv Detail & Related papers (2023-03-15T18:33:18Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Towards Semantic Communication Protocols: A Probabilistic Logic
Perspective [69.68769942563812]
We propose a semantic protocol model (SPM) constructed by transforming an NPM into an interpretable symbolic graph written in the probabilistic logic programming language (ProbLog)
By leveraging its interpretability and memory-efficiency, we demonstrate several applications such as SPM reconfiguration for collision-avoidance.
arXiv Detail & Related papers (2022-07-08T14:19:36Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Scalable Mediated Semi-quantum Key Distribution [5.548873288570182]
Mediated semi-quantum key distribution (M-SQKD) permits two limited "semi-quantum" or "classical" users to establish a secret key with the help of a third party (TP)
Several protocols have been studied recently for two-party scenarios, but no one has considered M-SQKD for multi-party scenarios.
arXiv Detail & Related papers (2022-05-13T09:21:12Z) - Multi-party Semi-quantum Secret Sharing Protocol based on Measure-flip and Reflect Operations [1.3812010983144802]
Semi-quantum secret sharing (SQSS) protocols serve as fundamental frameworks in quantum secure multi-party computations.
This paper proposes a novel SQSS protocol based on multi-particle GHZ states.
arXiv Detail & Related papers (2021-09-03T08:52:17Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Client-Server Identification Protocols with Quantum PUF [1.4174475093445233]
We propose two identification protocols based on the emerging hardware secure solutions, the quantum Physical Unclonable Functions (qPUFs)
The first protocol allows a low-resource party to prove its identity to a high-resource party and in the second protocol, it is vice-versa.
Unlike existing identification protocols based on Quantum Read-out PUFs which rely on the security against a specific family of attacks, our protocols provide provable exponential security against any Quantum Polynomial-Time adversary with resource-efficient parties.
arXiv Detail & Related papers (2020-06-08T12:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.