Asymmetric Quantum Secure Multi-Party Computation With Weak Clients
Against Dishonest Majority
- URL: http://arxiv.org/abs/2303.08865v1
- Date: Wed, 15 Mar 2023 18:33:18 GMT
- Title: Asymmetric Quantum Secure Multi-Party Computation With Weak Clients
Against Dishonest Majority
- Authors: Theodoros Kapourniotis, Elham Kashefi, Dominik Leichtle, Luka Music,
Harold Ollivier
- Abstract summary: We introduce a protocol that lifts classical SMPC to quantum SMPC in a composably and statistically secure way.
Unlike previous quantum SMPC protocols, our proposal only requires very limited quantum resources from all but one party.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Secure multi-party computation (SMPC) protocols allow several parties that
distrust each other to collectively compute a function on their inputs. In this
paper, we introduce a protocol that lifts classical SMPC to quantum SMPC in a
composably and statistically secure way, even for a single honest party. Unlike
previous quantum SMPC protocols, our proposal only requires very limited
quantum resources from all but one party; it suffices that the weak parties,
i.e. the clients, are able to prepare single-qubit states in the X-Y plane. The
novel quantum SMPC protocol is constructed in a naturally modular way, and
relies on a new technique for quantum verification that is of independent
interest. This verification technique requires the remote preparation of states
only in a single plane of the Bloch sphere. In the course of proving the
security of the new verification protocol, we also uncover a fundamental
invariance that is inherent to measurement-based quantum computing.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - From Auditable Quantum Authentication to Best-of-Both-Worlds Multiparty
Quantum Computation with Public Verifiable Identifiable Abort [0.5076419064097734]
We construct the first secure multiparty quantum computation with public verifiable identifiable abort (MPQC-PVIA) protocol.
MPQC is the first quantum setting to provide Best-of-Both-Worlds (BoBW) security, which attains full security with an honest majority.
arXiv Detail & Related papers (2022-11-03T09:12:48Z) - Resource analysis for quantum-aided Byzantine agreement with the four-qubit singlet state [1.2094859111770522]
In distributed computing, a Byzantine fault is a condition where a component behaves inconsistently, showing different symptoms to different components of the system.
Our work highlights important engineering aspects of the future deployment of quantum communication protocols with multi-qubit entangled states.
arXiv Detail & Related papers (2022-07-11T15:17:58Z) - Multi-party Semi-quantum Secret Sharing Protocol based on Measure-flip and Reflect Operations [1.3812010983144802]
Semi-quantum secret sharing (SQSS) protocols serve as fundamental frameworks in quantum secure multi-party computations.
This paper proposes a novel SQSS protocol based on multi-particle GHZ states.
arXiv Detail & Related papers (2021-09-03T08:52:17Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Delegating Multi-Party Quantum Computations vs. Dishonest Majority in
Two Quantum Rounds [0.0]
Multi-Party Quantum Computation (MPQC) has attracted a lot of attention as a potential killer-app for quantum networks.
We present a composable protocol achieving blindness and verifiability even in the case of a single honest client.
arXiv Detail & Related papers (2021-02-25T15:58:09Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Security Limitations of Classical-Client Delegated Quantum Computing [54.28005879611532]
A client remotely prepares a quantum state using a classical channel.
Privacy loss incurred by employing $RSP_CC$ as a sub-module is unclear.
We show that a specific $RSP_CC$ protocol can replace the quantum channel at least in some contexts.
arXiv Detail & Related papers (2020-07-03T13:15:13Z) - Client-Server Identification Protocols with Quantum PUF [1.4174475093445233]
We propose two identification protocols based on the emerging hardware secure solutions, the quantum Physical Unclonable Functions (qPUFs)
The first protocol allows a low-resource party to prove its identity to a high-resource party and in the second protocol, it is vice-versa.
Unlike existing identification protocols based on Quantum Read-out PUFs which rely on the security against a specific family of attacks, our protocols provide provable exponential security against any Quantum Polynomial-Time adversary with resource-efficient parties.
arXiv Detail & Related papers (2020-06-08T12:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.