論文の概要: Self-supervised Graph Learning for Long-tailed Cognitive Diagnosis
- arxiv url: http://arxiv.org/abs/2210.08169v1
- Date: Sat, 15 Oct 2022 02:57:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 17:42:10.716230
- Title: Self-supervised Graph Learning for Long-tailed Cognitive Diagnosis
- Title(参考訳): 長期認知診断のための自己教師付きグラフ学習
- Authors: Shanshan Wang, Zhen Zeng, Xun Yang, Xingyi Zhang
- Abstract要約: グラフに基づく認知診断を支援するための自己教師付き認知診断(SCD)フレームワークを提案する。
具体的には,グラフのスパースビューを生成するために,特定のルールの下でエッジをドロップするグラフ混乱法を考案した。
- 参考スコア(独自算出の注目度): 25.78814557029563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitive diagnosis is a fundamental yet critical research task in the field
of intelligent education, which aims to discover the proficiency level of
different students on specific knowledge concepts. Despite the effectiveness of
existing efforts, previous methods always considered the mastery level on the
whole students, so they still suffer from the Long Tail Effect. A large number
of students who have sparse data are performed poorly in the model. To relieve
the situation, we proposed a Self-supervised Cognitive Diagnosis (SCD)
framework which leverages the self-supervised manner to assist the graph-based
cognitive diagnosis, then the performance on those students with sparse data
can be improved. Specifically, we came up with a graph confusion method that
drops edges under some special rules to generate different sparse views of the
graph. By maximizing the consistency of the representation on the same node
under different views, the model could be more focused on long-tailed students.
Additionally, we proposed an importance-based view generation rule to improve
the influence of long-tailed students. Extensive experiments on real-world
datasets show the effectiveness of our approach, especially on the students
with sparse data.
- Abstract(参考訳): 認知的診断は知的教育における基礎的かつ批判的な研究課題であり、特定の知識概念に基づいて異なる生徒の習熟度を検出することを目的としている。
既存の取り組みの有効性にもかかわらず、従来の方法は学生全体の熟練レベルを常に考慮しており、ロングテール効果に苦しむ。
このモデルでは、スパースデータを持つ多数の学生が不十分に実行される。
そこで我々は,グラフに基づく認知診断を支援する自己教師型認知診断(SCD)フレームワークを提案する。
具体的には,グラフのスパースビューを生成するために,特定のルールの下でエッジをドロップするグラフ混乱法を考案した。
異なるビューの下で同じノード上の表現の一貫性を最大化することで、モデルはよりロングテールの学生に焦点を合わせることができる。
また,ロングテールの学生の影響を改善するために,重要度に基づく視点生成ルールを提案した。
実世界のデータセットに対する大規模な実験は、我々のアプローチの有効性を示している。
関連論文リスト
- Granularity Matters in Long-Tail Learning [62.30734737735273]
より粒度の細かいデータセットは、データの不均衡の影響を受けにくい傾向があります。
既存のクラスと視覚的に類似したオープンセット補助クラスを導入し、頭と尾の両方の表現学習を強化することを目的とした。
補助授業の圧倒的な存在がトレーニングを混乱させるのを防ぐために,近隣のサイレンシング障害を導入する。
論文 参考訳(メタデータ) (2024-10-21T13:06:21Z) - Disentangled Generative Graph Representation Learning [51.59824683232925]
本稿では,自己教師型学習フレームワークであるDiGGR(Disentangled Generative Graph Representation Learning)を紹介する。
潜伏要因を学習し、それをグラフマスクモデリングのガイドとして活用することを目的としている。
2つの異なるグラフ学習タスクのための11の公開データセットの実験は、DiGGRが従来よりも一貫して多くの自己教師付きメソッドを上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-24T05:13:02Z) - Imbalanced Graph-Level Anomaly Detection via Counterfactual Augmentation and Feature Learning [1.3756846638796]
本稿では,非バランスなGLAD手法を提案する。
我々は、このモデルを脳疾患データセットに適用し、我々の研究の能力を証明することができる。
論文 参考訳(メタデータ) (2024-07-13T13:40:06Z) - Improving Cognitive Diagnosis Models with Adaptive Relational Graph Neural Networks [33.76551090755183]
認知診断(CD)アルゴリズムは、様々な知識概念に基づいて生徒の能力を推定することで学生を支援する。
近年,学生による2部グラフの構築と導入が診断性能の向上に有用であることが報告されている。
本稿では, 適応セマンティックグラフに基づく認知診断モデル (ASG-CD) を提案する。
論文 参考訳(メタデータ) (2024-02-15T14:12:38Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
社会デマトグラフィープロンプトは、特定の社会デマトグラフィープロファイルを持つ人間が与える答えに向けて、プロンプトベースのモデルの出力を操縦する技術である。
ソシオデマトグラフィー情報はモデル予測に影響を及ぼし、主観的NLPタスクにおけるゼロショット学習を改善するのに有用であることを示す。
論文 参考訳(メタデータ) (2023-09-13T15:42:06Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - Self-supervised Representation Learning on Electronic Health Records
with Graph Kernel Infomax [4.133378723518227]
EHRのグラフィカル表現に対する自己教師付きグラフカーネル学習手法であるGraph Kernel Infomaxを提案する。
最先端とは違って、グラフ構造を変更して拡張ビューを構築することはできません。
我々のアプローチは、最先端を超える臨床下流課題にパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2022-09-01T16:15:08Z) - A Survey on Long-Tailed Visual Recognition [13.138929184395423]
我々は、長い尾を持つデータ分布に起因する問題に焦点をあて、代表的な長い尾を持つ視覚認識データセットを整理し、いくつかの主流の長い尾を持つ研究を要約する。
Gini係数に基づいて、過去10年間に提案された20の広範に利用されている大規模ビジュアルデータセットを定量的に研究する。
論文 参考訳(メタデータ) (2022-05-27T06:22:55Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
離散性に基づく自己監督型LeArning(D-SLA)と呼ばれる原図と摂動グラフの正確な相違を学習することを目的としたフレームワークを提案する。
本稿では,分子特性予測,タンパク質機能予測,リンク予測タスクなど,グラフ関連下流タスクにおける本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-02-07T08:04:59Z) - Iterative Graph Self-Distillation [161.04351580382078]
我々は、IGSD(Iterative Graph Self-Distillation)と呼ばれる新しい教師なしグラフ学習パラダイムを提案する。
IGSDは、グラフ拡張による教師/学生の蒸留を反復的に行う。
我々は,教師なしと半教師なしの両方の設定において,さまざまなグラフデータセットに対して,有意かつ一貫したパフォーマンス向上を実現していることを示す。
論文 参考訳(メタデータ) (2020-10-23T18:37:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。