論文の概要: Call Graph Evolution Analytics over a Version Series of an Evolving
Software System
- arxiv url: http://arxiv.org/abs/2210.08316v1
- Date: Sat, 15 Oct 2022 15:12:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 15:14:29.158490
- Title: Call Graph Evolution Analytics over a Version Series of an Evolving
Software System
- Title(参考訳): 進化するソフトウェアシステムのバージョンシリーズ上でのコールグラフ進化分析
- Authors: Animesh Chaturvedi
- Abstract要約: グラフ進化分析(Graph Evolution Analytics)は、ソフトウェアシステムのメンテナンスや進化において、ソフトウェアエンジニアを支援する。
これは、CGER(Call Graph Evolution Rules)とCGES(Call Graph Evolution Subgraphs)を使用して行われる。
- 参考スコア(独自算出の注目度): 0.15229257192293197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Call Graph evolution analytics can aid a software engineer when maintaining
or evolving a software system. This paper proposes Call Graph Evolution
Analytics to extract information from an evolving call graph ECG = CG_1,
CG_2,... CG_N for their version series VS = V_1, V_2, ... V_N of an evolving
software system. This is done using Call Graph Evolution Rules (CGERs) and Call
Graph Evolution Subgraphs (CGESs). Similar to association rule mining, the
CGERs are used to capture co-occurrences of dependencies in the system. Like
subgraph patterns in a call graph, the CGESs are used to capture evolution of
dependency patterns in evolving call graphs. Call graph analytics on the
evolution in these patterns can identify potentially affected dependencies (or
procedure calls) that need attention. The experiments are done on the evolving
call graphs of 10 large evolving systems to support dependency evolution
management. We also consider results from a detailed study for evolving call
graphs of Maven-Core's version series.
- Abstract(参考訳): グラフ進化分析(Graph Evolution Analytics)は、ソフトウェアシステムのメンテナンスや進化において、ソフトウェアエンジニアを支援する。
本稿では,コールグラフecg = cg_1, cg_2, ... から情報を抽出するためのコールグラフ進化解析を提案する。
cg_n バージョンシリーズ vs = v_1, v_2, ...
進化するソフトウェアシステムのV_N。
これは、CGER(Call Graph Evolution Rules)とCGES(Call Graph Evolution Subgraphs)を使用して行われる。
関連ルールマイニングと同様に、cgerはシステム内の依存関係の共起を捉えるために使用される。
コールグラフのサブグラフパターンのように、CGESはコールグラフの進化における依存性パターンの進化を捉えるために使用される。
これらのパターンの進化に関するコールグラフ分析は、注意を必要とする潜在的な影響を受ける依存関係(あるいは手続き呼び出し)を識別することができる。
実験は、依存性進化管理をサポートするために、10の大規模進化システムのコールグラフで行われます。
Maven-Coreのバージョンシリーズのコールグラフの進化に関する詳細な研究結果についても検討する。
関連論文リスト
- InstructG2I: Synthesizing Images from Multimodal Attributed Graphs [50.852150521561676]
InstructG2Iと呼ばれるグラフ文脈条件拡散モデルを提案する。
InstructG2Iはまずグラフ構造とマルチモーダル情報を利用して情報的隣人サンプリングを行う。
Graph-QFormerエンコーダは、グラフノードをグラフプロンプトの補助セットに適応的に符号化し、デノナイジングプロセスを導く。
論文 参考訳(メタデータ) (2024-10-09T17:56:15Z) - Online Graph Filtering Over Expanding Graphs [14.594691605523005]
オンライン学習の原則に依存するオンライングラフフィルタリングフレームワークを提案する。
このような進化に適応した学習者を含む、トポロジが知られ、未知のシナリオのためのフィルタを設計する。
我々は,オンラインアルゴリズムやフィルタ順序,成長するグラフモデルなど,さまざまなコンポーネントが果たす役割を強調するために,後悔の意を表す分析を行う。
論文 参考訳(メタデータ) (2024-09-11T11:50:16Z) - CKGConv: General Graph Convolution with Continuous Kernels [24.58050212186722]
グラフ位置符号化によって導出される疑似座標の連続関数としてカーネルをパラメータ化することで、新しい一般的なグラフ畳み込みフレームワークを提案する。
このContinuous Kernel Graph Convolution(CKGConv)と名付けます。
CKGConvベースのネットワークは、既存のグラフ畳み込みネットワークよりも優れており、様々なグラフデータセットで最高のグラフ変換器と互換性があることを示す。
論文 参考訳(メタデータ) (2024-04-21T10:26:13Z) - Overcoming Order in Autoregressive Graph Generation [12.351817671944515]
グラフ生成は、化学やソーシャルネットワークなど、さまざまな領域における基本的な問題である。
近年の研究では、リカレントニューラルネットワーク(RNN)を用いた分子グラフ生成が、従来の生成手法と比較して有利であることが示されている。
論文 参考訳(メタデータ) (2024-02-04T09:58:22Z) - Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit
Diversity Modeling [60.0185734837814]
グラフニューラルネットワーク(GNN)は、グラフデータからの学習に広く応用されている。
GNNの一般化能力を強化するため、グラフ強化のような技術を用いて、トレーニンググラフ構造を増強することが慣例となっている。
本研究では,GNNにMixture-of-Experts(MoE)の概念を導入する。
論文 参考訳(メタデータ) (2023-04-06T01:09:36Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Learning Attribute-Structure Co-Evolutions in Dynamic Graphs [28.848851822725933]
本稿では動的属性グラフシーケンスをモデル化するCoEvoGNNという新しいフレームワークを提案する。
これは、シーケンスを通じて生成を埋め込むことで、現在のグラフに対する以前のグラフの影響を保っている。
進化における長距離依存をモデル化するための時間的自己認識機構を持つ。
論文 参考訳(メタデータ) (2020-07-25T20:07:28Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
グラフオートエンコーダ(GAE)は、グラフ埋め込みのための表現学習において強力なツールである。
本稿では,2つの新しい教師なしグラフ埋め込み法,適応グラフ学習(BAGE)による教師なしグラフ埋め込み,変分適応グラフ学習(VBAGE)による教師なしグラフ埋め込みを提案する。
いくつかのデータセットに関する実験的研究により、我々の手法がノードクラスタリング、ノード分類、グラフ可視化タスクにおいて、ベースラインよりも優れていることが実証された。
論文 参考訳(メタデータ) (2020-03-10T02:33:14Z) - Graph Deconvolutional Generation [3.5138314002170192]
我々は、Erdos-Renyiランダムグラフモデルの現代の等価性、すなわちグラフ変分オートエンコーダ(GVAE)に焦点を当てる。
GVAEは、トレーニング分布のマッチングが困難であり、高価なグラフマッチング手順に依存している。
我々は、GVAEのエンコーダとデコーダにメッセージパッシングニューラルネットワークを構築することにより、このモデルのクラスを改善した。
論文 参考訳(メタデータ) (2020-02-14T04:37:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。