Towards true discovery of the differential equations
- URL: http://arxiv.org/abs/2308.04901v2
- Date: Thu, 22 Feb 2024 15:30:42 GMT
- Title: Towards true discovery of the differential equations
- Authors: Alexander Hvatov and Roman Titov
- Abstract summary: Differential equation discovery is a machine learning subfield used to develop interpretable models.
This paper explores the prerequisites and tools for independent equation discovery without expert input.
- Score: 57.089645396998506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential equation discovery, a machine learning subfield, is used to
develop interpretable models, particularly in nature-related applications. By
expertly incorporating the general parametric form of the equation of motion
and appropriate differential terms, algorithms can autonomously uncover
equations from data. This paper explores the prerequisites and tools for
independent equation discovery without expert input, eliminating the need for
equation form assumptions. We focus on addressing the challenge of assessing
the adequacy of discovered equations when the correct equation is unknown, with
the aim of providing insights for reliable equation discovery without prior
knowledge of the equation form.
Related papers
- Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Comparison of Single- and Multi- Objective Optimization Quality for
Evolutionary Equation Discovery [77.34726150561087]
Evolutionary differential equation discovery proved to be a tool to obtain equations with less a priori assumptions.
The proposed comparison approach is shown on classical model examples -- Burgers equation, wave equation, and Korteweg - de Vries equation.
arXiv Detail & Related papers (2023-06-29T15:37:19Z) - Model-free machine learning of conservation laws from data [0.0]
We present a machine learning based method for learning first integrals of systems of ordinary differential equations from given trajectory data.
As a by-product, once the first integrals have been learned, also the system of differential equations will be known.
arXiv Detail & Related papers (2023-01-12T19:18:07Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
We propose D-CIPHER, which is robust to measurement artifacts and can uncover a new and very general class of differential equations.
We further design a novel optimization procedure, CoLLie, to help D-CIPHER search through this class efficiently.
arXiv Detail & Related papers (2022-06-21T17:59:20Z) - Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
Dictionary-based Sparse Regression Approach [9.36739413306697]
We blend machine learning and dictionary-based learning with numerical analysis tools to discover governing differential equations.
We obtain interpretable and parsimonious models which are prone to generalize better beyond the sampling regime.
We discuss its extension to governing equations, containing rational nonlinearities that typically appear in biological networks.
arXiv Detail & Related papers (2021-05-11T08:46:51Z) - Multi-objective discovery of PDE systems using evolutionary approach [77.34726150561087]
In the paper, a multi-objective co-evolution algorithm is described.
The single equations within the system and the system itself are evolved simultaneously to obtain the system.
In contrast to the single vector equation, a component-wise system is more suitable for expert interpretation and, therefore, for applications.
arXiv Detail & Related papers (2021-03-11T15:37:52Z) - Data-Driven Discovery of Coarse-Grained Equations [0.0]
Multiscale modeling and simulations are two areas where learning on simulated data can lead to such discovery.
We replace the human discovery of such models with a machine-learning strategy based on sparse regression that can be executed in two modes.
A series of examples demonstrates the accuracy, robustness, and limitations of our approach to equation discovery.
arXiv Detail & Related papers (2020-01-30T23:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.