A Simple and Strong Baseline for End-to-End Neural RST-style Discourse
Parsing
- URL: http://arxiv.org/abs/2210.08355v1
- Date: Sat, 15 Oct 2022 18:38:08 GMT
- Title: A Simple and Strong Baseline for End-to-End Neural RST-style Discourse
Parsing
- Authors: Naoki Kobayashi, Tsutomu Hirao, Hidetaka Kamigaito, Manabu Okumura,
Masaaki Nagata
- Abstract summary: This paper explores a strong baseline by integrating existing simple parsing strategies, top-down and bottom-up, with various transformer-based pre-trained language models.
The experimental results obtained from two benchmark datasets demonstrate that the parsing performance relies on the pretrained language models rather than the parsing strategies.
- Score: 44.72809363746258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To promote and further develop RST-style discourse parsing models, we need a
strong baseline that can be regarded as a reference for reporting reliable
experimental results. This paper explores a strong baseline by integrating
existing simple parsing strategies, top-down and bottom-up, with various
transformer-based pre-trained language models. The experimental results
obtained from two benchmark datasets demonstrate that the parsing performance
strongly relies on the pretrained language models rather than the parsing
strategies. In particular, the bottom-up parser achieves large performance
gains compared to the current best parser when employing DeBERTa. We further
reveal that language models with a span-masking scheme especially boost the
parsing performance through our analysis within intra- and multi-sentential
parsing, and nuclearity prediction.
Related papers
- MACT: Model-Agnostic Cross-Lingual Training for Discourse Representation Structure Parsing [4.536003573070846]
We introduce a cross-lingual training strategy for semantic representation parsing models.
It exploits the alignments between languages encoded in pre-trained language models.
Experiments show significant improvements in DRS clause and graph parsing in English, German, Italian and Dutch.
arXiv Detail & Related papers (2024-06-03T07:02:57Z) - Cross-domain Chinese Sentence Pattern Parsing [67.1381983012038]
Sentence Pattern Structure (SPS) parsing is a syntactic analysis method primarily employed in language teaching.
Existing SPSs rely heavily on textbook corpora for training, lacking cross-domain capability.
This paper proposes an innovative approach leveraging large language models (LLMs) within a self-training framework.
arXiv Detail & Related papers (2024-02-26T05:30:48Z) - Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data.
We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between latent variables using Optimal Transport.
arXiv Detail & Related papers (2023-07-09T04:52:31Z) - BenchCLAMP: A Benchmark for Evaluating Language Models on Syntactic and
Semantic Parsing [55.058258437125524]
We introduce BenchCLAMP, a Benchmark to evaluate Constrained LAnguage Model Parsing.
We benchmark eight language models, including two GPT-3 variants available only through an API.
Our experiments show that encoder-decoder pretrained language models can achieve similar performance or surpass state-of-the-art methods for syntactic and semantic parsing when the model output is constrained to be valid.
arXiv Detail & Related papers (2022-06-21T18:34:11Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
We develop a neural network based abstractive multi-document summarization (MDS) model.
We process the dependency information into the linguistic-guided attention mechanism.
With the help of linguistic signals, sentence-level relations can be correctly captured.
arXiv Detail & Related papers (2021-09-23T08:13:35Z) - Structural Guidance for Transformer Language Models [24.00537240110055]
We study whether structural guidance leads to more human-like systematic linguistic generalization in Transformer language models.
Experiment results suggest converging evidence that generative structural supervisions can induce more robust and humanlike linguistic generalization.
arXiv Detail & Related papers (2021-07-30T23:14:51Z) - Unleashing the Power of Neural Discourse Parsers -- A Context and
Structure Aware Approach Using Large Scale Pretraining [26.517219486173598]
RST-based discourse parsing is an important NLP task with numerous downstream applications, such as summarization, machine translation and opinion mining.
In this paper, we demonstrate a simple, yet highly accurate discourse parsing, incorporating recent contextual language models.
Our establishes the new state-of-the-art (SOTA) performance for predicting structure and nuclearity on two key RST datasets, RST-DT and Instr-DT.
arXiv Detail & Related papers (2020-11-06T06:11:26Z) - Towards Instance-Level Parser Selection for Cross-Lingual Transfer of
Dependency Parsers [59.345145623931636]
We argue for a novel cross-lingual transfer paradigm: instance-level selection (ILPS)
We present a proof-of-concept study focused on instance-level selection in the framework of delexicalized transfer.
arXiv Detail & Related papers (2020-04-16T13:18:55Z) - Dynamic Data Selection and Weighting for Iterative Back-Translation [116.14378571769045]
We propose a curriculum learning strategy for iterative back-translation models.
We evaluate our models on domain adaptation, low-resource, and high-resource MT settings.
Experimental results demonstrate that our methods achieve improvements of up to 1.8 BLEU points over competitive baselines.
arXiv Detail & Related papers (2020-04-07T19:49:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.