Towards Effective Image Manipulation Detection with Proposal Contrastive
Learning
- URL: http://arxiv.org/abs/2210.08529v1
- Date: Sun, 16 Oct 2022 13:30:13 GMT
- Title: Towards Effective Image Manipulation Detection with Proposal Contrastive
Learning
- Authors: Yuyuan Zeng, Bowen Zhao, Shanzhao Qiu, Tao Dai, Shu-Tao Xia
- Abstract summary: We propose Proposal Contrastive Learning (PCL) for effective image manipulation detection.
Our PCL consists of a two-stream architecture by extracting two types of global features from RGB and noise views respectively.
Our PCL can be easily adapted to unlabeled data in practice, which can reduce manual labeling costs and promote more generalizable features.
- Score: 61.5469708038966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep models have been widely and successfully used in image manipulation
detection, which aims to classify tampered images and localize tampered
regions. Most existing methods mainly focus on extracting \textit{global
features} from tampered images, while neglecting the \textit{relationships of
local features} between tampered and authentic regions within a single tampered
image. To exploit such spatial relationships, we propose Proposal Contrastive
Learning (PCL) for effective image manipulation detection. Our PCL consists of
a two-stream architecture by extracting two types of global features from RGB
and noise views respectively. To further improve the discriminative power, we
exploit the relationships of local features through a proxy proposal
contrastive learning task by attracting/repelling proposal-based
positive/negative sample pairs. Moreover, we show that our PCL can be easily
adapted to unlabeled data in practice, which can reduce manual labeling costs
and promote more generalizable features. Extensive experiments among several
standard datasets demonstrate that our PCL can be a general module to obtain
consistent improvement.
Related papers
- DIAL: Dense Image-text ALignment for Weakly Supervised Semantic Segmentation [8.422110274212503]
Weakly supervised semantic segmentation approaches typically rely on class activation maps (CAMs) for initial seed generation.
We introduce DALNet, which leverages text embeddings to enhance the comprehensive understanding and precise localization of objects across different levels of granularity.
Our approach, in particular, allows for more efficient end-to-end process as a single-stage method.
arXiv Detail & Related papers (2024-09-24T06:51:49Z) - Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization [52.87635234206178]
This paper proposes a new framework, namely MoNFAP, specifically tailored for multi-face manipulation detection and localization.
The framework incorporates two novel modules: the Forgery-aware Unified Predictor (FUP) Module and the Mixture-of-Noises Module (MNM)
arXiv Detail & Related papers (2024-08-05T08:35:59Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [63.54342601757723]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - Localized Region Contrast for Enhancing Self-Supervised Learning in
Medical Image Segmentation [27.82940072548603]
We propose a novel contrastive learning framework that integrates Localized Region Contrast (LRC) to enhance existing self-supervised pre-training methods for medical image segmentation.
Our approach involves identifying Super-pixels by Felzenszwalb's algorithm and performing local contrastive learning using a novel contrastive sampling loss.
arXiv Detail & Related papers (2023-04-06T22:43:13Z) - De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL) methods address the limitations of using image-level feature representations when handling images with multiple objects.
We show that they suffer from coupling and positional bias, which arise from the receptive field increasing with layer depth and zero-padding.
We demonstrate the benefits of our method on COCO and on a new challenging benchmark, OpenImage-MINI, for object classification, semantic segmentation, and object detection.
arXiv Detail & Related papers (2023-03-29T18:07:25Z) - ObjectFormer for Image Manipulation Detection and Localization [118.89882740099137]
We propose ObjectFormer to detect and localize image manipulations.
We extract high-frequency features of the images and combine them with RGB features as multimodal patch embeddings.
We conduct extensive experiments on various datasets and the results verify the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-03-28T12:27:34Z) - Remote Sensing Images Semantic Segmentation with General Remote Sensing
Vision Model via a Self-Supervised Contrastive Learning Method [13.479068312825781]
We propose Global style and Local matching Contrastive Learning Network (GLCNet) for remote sensing semantic segmentation.
Specifically, the global style contrastive module is used to learn an image-level representation better.
The local features matching contrastive module is designed to learn representations of local regions which is beneficial for semantic segmentation.
arXiv Detail & Related papers (2021-06-20T03:03:40Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
This paper studies how much it can help address domain shifts if we further have a few target samples labeled.
To explore the full potential of landmarks, we incorporate a prototypical alignment (PA) module which calculates a target prototype for each class from the landmarks.
Specifically, we severely perturb the labeled images, making PA non-trivial to achieve and thus promoting model generalizability.
arXiv Detail & Related papers (2021-04-19T08:46:08Z) - Spatially Consistent Representation Learning [12.120041613482558]
We propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks.
We devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region.
On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements.
arXiv Detail & Related papers (2021-03-10T15:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.