Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization
- URL: http://arxiv.org/abs/2408.02306v1
- Date: Mon, 5 Aug 2024 08:35:59 GMT
- Title: Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization
- Authors: Changtao Miao, Qi Chu, Tao Gong, Zhentao Tan, Zhenchao Jin, Wanyi Zhuang, Man Luo, Honggang Hu, Nenghai Yu,
- Abstract summary: This paper proposes a new framework, namely MoNFAP, specifically tailored for multi-face manipulation detection and localization.
The framework incorporates two novel modules: the Forgery-aware Unified Predictor (FUP) Module and the Mixture-of-Noises Module (MNM)
- Score: 52.87635234206178
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the advancement of face manipulation technology, forgery images in multi-face scenarios are gradually becoming a more complex and realistic challenge. Despite this, detection and localization methods for such multi-face manipulations remain underdeveloped. Traditional manipulation localization methods either indirectly derive detection results from localization masks, resulting in limited detection performance, or employ a naive two-branch structure to simultaneously obtain detection and localization results, which cannot effectively benefit the localization capability due to limited interaction between two tasks. This paper proposes a new framework, namely MoNFAP, specifically tailored for multi-face manipulation detection and localization. The MoNFAP primarily introduces two novel modules: the Forgery-aware Unified Predictor (FUP) Module and the Mixture-of-Noises Module (MNM). The FUP integrates detection and localization tasks using a token learning strategy and multiple forgery-aware transformers, which facilitates the use of classification information to enhance localization capability. Besides, motivated by the crucial role of noise information in forgery detection, the MNM leverages multiple noise extractors based on the concept of the mixture of experts to enhance the general RGB features, further boosting the performance of our framework. Finally, we establish a comprehensive benchmark for multi-face detection and localization and the proposed \textit{MoNFAP} achieves significant performance. The codes will be made available.
Related papers
- Multiple Contexts and Frequencies Aggregation Network forDeepfake Detection [5.65128683992597]
Deepfake detection faces increasing challenges since the fast growth of generative models in developing massive and diverse Deepfake technologies.
Recent advances rely on introducing features from spatial or frequency domains rather than modeling general forgery features within backbones.
We propose an efficient network for face forgery detection named MkfaNet, which consists of two core modules.
arXiv Detail & Related papers (2024-08-03T05:34:53Z) - Exploiting Facial Relationships and Feature Aggregation for Multi-Face
Forgery Detection [21.976412231332798]
existing methods predominantly concentrate on single-face manipulation detection, leaving the more intricate and realistic realm of multi-face forgeries relatively unexplored.
This paper proposes a novel framework explicitly tailored for multi-face forgery detection, filling a critical gap in the current research.
Our experimental results on two publicly available multi-face forgery datasets demonstrate that the proposed approach achieves state-of-the-art performance in multi-face forgery detection scenarios.
arXiv Detail & Related papers (2023-10-07T15:09:18Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.
Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.
Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - Multi-spectral Class Center Network for Face Manipulation Detection and Localization [52.569170436393165]
We propose a novel Multi-Spectral Class Center Network (MSCCNet) for face manipulation detection and localization.
Based on the features of different frequency bands, the MSCC module collects multi-spectral class centers and computes pixel-to-class relations.
Applying multi-spectral class-level representations suppresses the semantic information of the visual concepts which is insensitive to manipulated regions of forgery images.
arXiv Detail & Related papers (2023-05-18T08:09:20Z) - MSMG-Net: Multi-scale Multi-grained Supervised Metworks for Multi-task
Image Manipulation Detection and Localization [1.14219428942199]
A novel multi-scale multi-grained deep network (MSMG-Net) is proposed to automatically identify manipulated regions.
In our MSMG-Net, a parallel multi-scale feature extraction structure is used to extract multi-scale features.
The MSMG-Net can effectively perceive the object-level semantics and encode the edge artifact.
arXiv Detail & Related papers (2022-11-06T14:58:21Z) - Towards Effective Image Manipulation Detection with Proposal Contrastive
Learning [61.5469708038966]
We propose Proposal Contrastive Learning (PCL) for effective image manipulation detection.
Our PCL consists of a two-stream architecture by extracting two types of global features from RGB and noise views respectively.
Our PCL can be easily adapted to unlabeled data in practice, which can reduce manual labeling costs and promote more generalizable features.
arXiv Detail & Related papers (2022-10-16T13:30:13Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
Current object detectors typically have a feature pyramid (FP) module for multi-level feature fusion (MFF)
We propose a novel and efficient context modeling mechanism that can help existing FPs deliver better MFF results.
In particular, we introduce a novel insight that comprehensive contexts can be decomposed and condensed into two types of representations for higher efficiency.
arXiv Detail & Related papers (2022-07-14T01:45:03Z) - MC-LCR: Multi-modal contrastive classification by locally correlated
representations for effective face forgery detection [11.124150983521158]
We propose a novel framework named Multi-modal Contrastive Classification by Locally Correlated Representations.
Our MC-LCR aims to amplify implicit local discrepancies between authentic and forged faces from both spatial and frequency domains.
We achieve state-of-the-art performance and demonstrate the robustness and generalization of our method.
arXiv Detail & Related papers (2021-10-07T09:24:12Z) - Learnable Multi-level Frequency Decomposition and Hierarchical Attention
Mechanism for Generalized Face Presentation Attack Detection [7.324459578044212]
Face presentation attack detection (PAD) is attracting a lot of attention and playing a key role in securing face recognition systems.
We propose a dual-stream convolution neural networks (CNNs) framework to deal with unseen scenarios.
We successfully prove the design of our proposed PAD solution in a step-wise ablation study.
arXiv Detail & Related papers (2021-09-16T13:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.