A General Framework for Auditing Differentially Private Machine Learning
- URL: http://arxiv.org/abs/2210.08643v1
- Date: Sun, 16 Oct 2022 21:34:18 GMT
- Title: A General Framework for Auditing Differentially Private Machine Learning
- Authors: Fred Lu, Joseph Munoz, Maya Fuchs, Tyler LeBlond, Elliott
Zaresky-Williams, Edward Raff, Francis Ferraro, Brian Testa
- Abstract summary: We present a framework to statistically audit the privacy guarantee conferred by a differentially private machine learner in practice.
Our work develops a general methodology to empirically evaluate the privacy of differentially private machine learning implementations.
- Score: 27.99806936918949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a framework to statistically audit the privacy guarantee conferred
by a differentially private machine learner in practice. While previous works
have taken steps toward evaluating privacy loss through poisoning attacks or
membership inference, they have been tailored to specific models or have
demonstrated low statistical power. Our work develops a general methodology to
empirically evaluate the privacy of differentially private machine learning
implementations, combining improved privacy search and verification methods
with a toolkit of influence-based poisoning attacks. We demonstrate
significantly improved auditing power over previous approaches on a variety of
models including logistic regression, Naive Bayes, and random forest. Our
method can be used to detect privacy violations due to implementation errors or
misuse. When violations are not present, it can aid in understanding the amount
of information that can be leaked from a given dataset, algorithm, and privacy
specification.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Conditional Density Estimations from Privacy-Protected Data [0.0]
We propose simulation-based inference methods from privacy-protected datasets.
We illustrate our methods on discrete time-series data under an infectious disease model and with ordinary linear regression models.
arXiv Detail & Related papers (2023-10-19T14:34:17Z) - Tight Auditing of Differentially Private Machine Learning [77.38590306275877]
For private machine learning, existing auditing mechanisms are tight.
They only give tight estimates under implausible worst-case assumptions.
We design an improved auditing scheme that yields tight privacy estimates for natural (not adversarially crafted) datasets.
arXiv Detail & Related papers (2023-02-15T21:40:33Z) - Debugging Differential Privacy: A Case Study for Privacy Auditing [60.87570714269048]
We show that auditing can also be used to find flaws in (purportedly) differentially private schemes.
In this case study, we audit a recent open source implementation of a differentially private deep learning algorithm and find, with 99.99999999% confidence, that the implementation does not satisfy the claimed differential privacy guarantee.
arXiv Detail & Related papers (2022-02-24T17:31:08Z) - Towards a Data Privacy-Predictive Performance Trade-off [2.580765958706854]
We evaluate the existence of a trade-off between data privacy and predictive performance in classification tasks.
Unlike previous literature, we confirm that the higher the level of privacy, the higher the impact on predictive performance.
arXiv Detail & Related papers (2022-01-13T21:48:51Z) - Statistical Privacy Guarantees of Machine Learning Preprocessing
Techniques [1.198727138090351]
We adapt a privacy violation detection framework based on statistical methods to measure privacy levels of machine learning pipelines.
We apply the newly created framework to show that resampling techniques used when dealing with imbalanced datasets cause the resultant model to leak more privacy.
arXiv Detail & Related papers (2021-09-06T14:08:47Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.