Evaluation of Pedestrian Safety in a High-Fidelity Simulation Environment Framework
- URL: http://arxiv.org/abs/2210.08731v4
- Date: Tue, 30 Jul 2024 00:01:37 GMT
- Title: Evaluation of Pedestrian Safety in a High-Fidelity Simulation Environment Framework
- Authors: Lin Ma, Longrui Chen, Yan Zhang, Mengdi Chu, Wenjie Jiang, Jiahao Shen, Chuxuan Li, Yifeng Shi, Nairui Luo, Jirui Yuan, Guyue Zhou, Jiangtao Gong,
- Abstract summary: This paper proposes a pedestrian safety evaluation method for autonomous driving.
We construct a high-fidelity simulation framework embedded with pedestrian safety-critical characteristics.
The proposed simulation method and framework can be used to access different autonomous driving algorithms.
- Score: 21.456269382916062
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Pedestrians' safety is a crucial factor in assessing autonomous driving scenarios. However, pedestrian safety evaluation is rarely considered by existing autonomous driving simulation platforms. This paper proposes a pedestrian safety evaluation method for autonomous driving, in which not only the collision events but also the conflict events together with the characteristics of pedestrians are fully considered. Moreover, to apply the pedestrian safety evaluation system, we construct a high-fidelity simulation framework embedded with pedestrian safety-critical characteristics. We demonstrate our simulation framework and pedestrian safety evaluation with a comparative experiment with two kinds of autonomous driving perception algorithms -- single-vehicle perception and vehicle-to-infrastructure (V2I) cooperative perception. The results show that our framework can evaluate different autonomous driving algorithms with detailed and quantitative pedestrian safety indexes. To this end, the proposed simulation method and framework can be used to access different autonomous driving algorithms and evaluate pedestrians' safety performance in future autonomous driving simulations, which can inspire more pedestrian-friendly autonomous driving algorithms.
Related papers
- Autonomous Vehicle Decision-Making Framework for Considering Malicious
Behavior at Unsignalized Intersections [7.245712580297489]
In Autonomous Vehicles, reward signals are set as regular rewards regarding feedback factors such as safety and efficiency.
In this paper, safety gains are modulated by variable weighting parameters to ensure that safety can be emphasized more in emergency situations.
The decision framework enables Autonomous Vehicles to make informed decisions when encountering vehicles with potentially malicious behaviors at unsignalized intersections.
arXiv Detail & Related papers (2024-09-11T03:57:44Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
We introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving.
We design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent.
arXiv Detail & Related papers (2022-03-04T16:14:33Z) - Pedestrian Emergence Estimation and Occlusion-Aware Risk Assessment for
Urban Autonomous Driving [0.0]
We propose a pedestrian emergence estimation and occlusion-aware risk assessment system for urban autonomous driving.
First, the proposed system utilizes available contextual information, such as visible cars and pedestrians, to estimate pedestrian emergence probabilities in occluded regions.
The proposed controller outperformed the baselines in terms of safety and comfort measures.
arXiv Detail & Related papers (2021-07-06T00:07:09Z) - Reinforcement Learning Based Safe Decision Making for Highway Autonomous
Driving [1.995792341399967]
We develop a safe decision-making method for self-driving cars in a multi-lane, single-agent setting.
The proposed approach utilizes deep reinforcement learning to achieve a high-level policy for safe tactical decision-making.
arXiv Detail & Related papers (2021-05-13T19:17:30Z) - An NCAP-like Safety Indicator for Self-Driving Cars [2.741266294612776]
This paper proposes a mechanism to assess the safety of autonomous cars.
It assesses the car's safety in scenarios where the car must avoid collision with an adversary.
The safety measure, called Safe-Kamikaze Distance, computes the average similarity between sets of safe adversary's trajectories and kamikaze trajectories close to the safe trajectories.
arXiv Detail & Related papers (2021-04-02T02:39:53Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles [76.46575807165729]
We propose AdvSim, an adversarial framework to generate safety-critical scenarios for any LiDAR-based autonomy system.
By simulating directly from sensor data, we obtain adversarial scenarios that are safety-critical for the full autonomy stack.
arXiv Detail & Related papers (2021-01-16T23:23:12Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z) - Interpretable Safety Validation for Autonomous Vehicles [44.44006029119672]
This work describes an approach for finding interpretable failures of an autonomous system.
The failures are described by signal temporal logic expressions that can be understood by a human.
arXiv Detail & Related papers (2020-04-14T21:11:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.