論文の概要: Row-wise LiDAR Lane Detection Network with Lane Correlation Refinement
- arxiv url: http://arxiv.org/abs/2210.08745v1
- Date: Mon, 17 Oct 2022 04:47:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 19:27:45.214029
- Title: Row-wise LiDAR Lane Detection Network with Lane Correlation Refinement
- Title(参考訳): レーン相関を細分化した行方向ライダー車線検出ネットワーク
- Authors: Dong-Hee Paek, Kevin Tirta Wijaya, Seung-Hyun Kong
- Abstract要約: 行ワイズ検出手法を用いた2段LiDARレーン検出ネットワークを提案する。
第1段ネットワークは、グローバルな特徴相関器バックボーンと行ワイド検出ヘッドを介してレーン提案を生成する。
提案したネットワークは、GFLOPを30%削減したF1スコアで最先端のネットワークを推進している。
- 参考スコア(独自算出の注目度): 1.6832237384792461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lane detection is one of the most important functions for autonomous driving.
In recent years, deep learning-based lane detection networks with RGB camera
images have shown promising performance. However, camera-based methods are
inherently vulnerable to adverse lighting conditions such as poor or dazzling
lighting. Unlike camera, LiDAR sensor is robust to the lighting conditions. In
this work, we propose a novel two-stage LiDAR lane detection network with
row-wise detection approach. The first-stage network produces lane proposals
through a global feature correlator backbone and a row-wise detection head.
Meanwhile, the second-stage network refines the feature map of the first-stage
network via attention-based mechanism between the local features around the
lane proposals, and outputs a set of new lane proposals. Experimental results
on the K-Lane dataset show that the proposed network advances the
state-of-the-art in terms of F1-score with 30% less GFLOPs. In addition, the
second-stage network is found to be especially robust to lane occlusions, thus,
demonstrating the robustness of the proposed network for driving in crowded
environments.
- Abstract(参考訳): レーン検出は自動運転において最も重要な機能の一つである。
近年,rgbカメラ画像を用いた深層学習型レーン検出ネットワークが有望な性能を示している。
しかし、カメラベースの手法は本質的には、照明の悪さやダズリングといった悪質な照明条件に弱い。
カメラとは異なり、LiDARセンサーは照明条件に耐性がある。
本研究では,行方向検出手法を用いた2段lidarレーン検出ネットワークを提案する。
第1段階のネットワークは、グローバル機能コリレータバックボーンと行方向検出ヘッドを介してレーン提案を生成する。
一方、第2段階ネットワークは、レーン提案周辺のローカル機能間の注意に基づくメカニズムを介して、第1段階ネットワークの特徴マップを洗練し、新しいレーン提案のセットを出力する。
K-Laneデータセットの実験結果から,提案したネットワークは,GFLOPを30%削減したF1スコアで最先端のネットワークを進展させることが示された。
さらに,2段目のネットワークは特に車線閉塞に対して堅牢であり,混み合った環境での運転において,提案するネットワークの堅牢性を示す。
関連論文リスト
- Monocular Lane Detection Based on Deep Learning: A Survey [51.19079381823076]
車線検出は自律運転認識システムにおいて重要な役割を果たす。
ディープラーニングアルゴリズムが普及するにつれて、ディープラーニングに基づく単眼車線検出手法が優れた性能を示した。
本稿では, 成熟度の高い2次元車線検出手法と開発途上国の3次元車線検出技術の両方を網羅して, 既存手法の概要を概説する。
論文 参考訳(メタデータ) (2024-11-25T12:09:43Z) - FENet: Focusing Enhanced Network for Lane Detection [0.0]
この研究は、Focusing Smpling、Partial Field of View Evaluation、Enhanced FPN Architecture、Directional IoU Lossで拡張されたネットワークのパイオニアである。
実験では、均一なアプローチとは異なり、重要な遠隔の細部を強調しながら、集中サンプリング戦略を実証した。
今後の方向性には、道路上のデータ収集や、補完的な2つのフレームワークの統合などが含まれる。
論文 参考訳(メタデータ) (2023-12-28T17:52:09Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
本稿では,自動車のRADARセンサを用いて動的障害物や乾燥可能な自由空間を検出するディープニューラルネットワーク(DNN)を提案する。
ネットワークは組み込みGPU上でリアルタイムよりも高速に動作し、地理的領域にわたって優れた一般化を示す。
論文 参考訳(メタデータ) (2022-09-29T01:30:34Z) - Blind-Spot Collision Detection System for Commercial Vehicles Using
Multi Deep CNN Architecture [0.17499351967216337]
高レベル特徴記述子に基づく2つの畳み込みニューラルネットワーク(CNN)は、重車両の盲点衝突を検出するために提案される。
盲点車両検出のための高次特徴抽出のための2つの事前学習ネットワークを統合するために,融合手法を提案する。
機能の融合により、より高速なR-CNNの性能が大幅に向上し、既存の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2022-08-17T11:10:37Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - LIF-Seg: LiDAR and Camera Image Fusion for 3D LiDAR Semantic
Segmentation [78.74202673902303]
本稿では,LiDAR分割のための粗大なLiDARとカメラフュージョンベースネットワーク(LIF-Seg)を提案する。
提案手法は,画像の文脈情報を完全に活用し,単純だが効果的な早期融合戦略を導入する。
これら2つのコンポーネントの協力により、効果的なカメラ-LiDAR融合が成功する。
論文 参考訳(メタデータ) (2021-08-17T08:53:11Z) - Pseudo-LiDAR Based Road Detection [5.9106199000537645]
推論時にのみRGBが入力となる新しい道路検出手法を提案する。
深度推定を用いた擬似LiDARを利用して,RGBと学習深度情報を融合した特徴融合ネットワークを提案する。
提案手法は, KITTI と R2D の2つのベンチマークにおいて,最先端性能を実現する。
論文 参考訳(メタデータ) (2021-07-28T11:21:42Z) - LDNet: End-to-End Lane Marking Detection Approach Using a Dynamic Vision
Sensor [0.0]
本稿では,イベントカメラを用いたレーンマーキング検出の新たな応用について検討する。
符号化された特徴の空間分解能は、密度の高密度な空間ピラミッドプールブロックによって保持される。
提案手法の有効性をDVSデータセットを用いて評価した。
論文 参考訳(メタデータ) (2020-09-17T02:15:41Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - Lane Detection Model Based on Spatio-Temporal Network With Double
Convolutional Gated Recurrent Units [11.968518335236787]
レーン検出は今後しばらくは未解決の問題として残るだろう。
二重円錐 Gated Recurrent Units (ConvGRUs) を用いた時空間ネットワークは、困難なシーンにおける車線検出に対処することを提案した。
我々のモデルは最先端の車線検出モデルより優れている。
論文 参考訳(メタデータ) (2020-08-10T06:50:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。