Rethinking Fair Representation Learning for Performance-Sensitive Tasks
- URL: http://arxiv.org/abs/2410.04120v1
- Date: Sat, 5 Oct 2024 11:01:16 GMT
- Title: Rethinking Fair Representation Learning for Performance-Sensitive Tasks
- Authors: Charles Jones, Fabio de Sousa Ribeiro, Mélanie Roschewitz, Daniel C. Castro, Ben Glocker,
- Abstract summary: We use causal reasoning to define and formalise different sources of dataset bias.
We run experiments across a range of medical modalities to examine the performance of fair representation learning under distribution shifts.
- Score: 19.40265690963578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the prominent class of fair representation learning methods for bias mitigation. Using causal reasoning to define and formalise different sources of dataset bias, we reveal important implicit assumptions inherent to these methods. We prove fundamental limitations on fair representation learning when evaluation data is drawn from the same distribution as training data and run experiments across a range of medical modalities to examine the performance of fair representation learning under distribution shifts. Our results explain apparent contradictions in the existing literature and reveal how rarely considered causal and statistical aspects of the underlying data affect the validity of fair representation learning. We raise doubts about current evaluation practices and the applicability of fair representation learning methods in performance-sensitive settings. We argue that fine-grained analysis of dataset biases should play a key role in the field moving forward.
Related papers
- Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
Mitigating bias in training on biased datasets is an important open problem.
We examine the performance of various debiasing methods across multiple tasks.
We find that data conditions have a strong influence on relative model performance.
arXiv Detail & Related papers (2022-10-17T05:40:13Z) - Disentangled Representation with Causal Constraints for Counterfactual
Fairness [25.114619307838602]
This work theoretically demonstrates that using the structured representations enable downstream predictive models to achieve counterfactual fairness.
We propose the Counterfactual Fairness Variational AutoEncoder (CF-VAE) to obtain structured representations with respect to domain knowledge.
The experimental results show that the proposed method achieves better fairness and accuracy performance than the benchmark fairness methods.
arXiv Detail & Related papers (2022-08-19T04:47:58Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
We study learning fair representations that satisfy a notion of fairness known as equalized odds for text classification via contrastive learning.
Specifically, we first theoretically analyze the connections between learning representations with a fairness constraint and conditional supervised contrastive objectives.
arXiv Detail & Related papers (2022-05-23T17:38:30Z) - On Learning and Testing of Counterfactual Fairness through Data
Preprocessing [27.674565351048077]
Machine learning has become more important in real-life decision-making but people are concerned about the ethical problems it may bring when used improperly.
Recent work brings the discussion of machine learning fairness into the causal framework and elaborates on the concept of Counterfactual Fairness.
We develop the Fair Learning through dAta Preprocessing (FLAP) algorithm to learn counterfactually fair decisions from biased training data.
arXiv Detail & Related papers (2022-02-25T00:21:46Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Fair Representation Learning using Interpolation Enabled Disentanglement [9.043741281011304]
We propose a novel method to address two key issues: (a) Can we simultaneously learn fair disentangled representations while ensuring the utility of the learned representation for downstream tasks, and (b)Can we provide theoretical insights into when the proposed approach will be both fair and accurate.
To address the former, we propose the method FRIED, Fair Representation learning using Interpolation Enabled Disentanglement.
arXiv Detail & Related papers (2021-07-31T17:32:12Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
Data management research is showing an increasing presence and interest in topics related to data and algorithmic fairness.
We contribute a broad analysis of 13 fair classification approaches and additional variants, over their correctness, fairness, efficiency, scalability, and stability.
Our analysis highlights novel insights on the impact of different metrics and high-level approach characteristics on different aspects of performance.
arXiv Detail & Related papers (2021-01-18T22:55:40Z) - Fairness by Learning Orthogonal Disentangled Representations [50.82638766862974]
We propose a novel disentanglement approach to invariant representation problem.
We enforce the meaningful representation to be agnostic to sensitive information by entropy.
The proposed approach is evaluated on five publicly available datasets.
arXiv Detail & Related papers (2020-03-12T11:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.