論文の概要: Stochastic Differentially Private and Fair Learning
- arxiv url: http://arxiv.org/abs/2210.08781v1
- Date: Mon, 17 Oct 2022 06:54:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 21:51:37.258874
- Title: Stochastic Differentially Private and Fair Learning
- Title(参考訳): 確率的個人的・公正な学習
- Authors: Andrew Lowy, Devansh Gupta, Meisam Razaviyayn
- Abstract要約: 我々は、収束することが保証されるフェアラーニングのための最初の微分プライベートアルゴリズムを提供する。
われわれのフレームワークは、人口格差や均等化オッズなど、さまざまな公平さを許容できるほど柔軟である。
本アルゴリズムは,複数の(非バイナリ)機密属性を持つ非バイナリ分類タスクに適用可能である。
- 参考スコア(独自算出の注目度): 7.971065005161566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models are increasingly used in high-stakes decision-making
systems. In such applications, a major concern is that these models sometimes
discriminate against certain demographic groups such as individuals with
certain race, gender, or age. Another major concern in these applications is
the violation of the privacy of users. While fair learning algorithms have been
developed to mitigate discrimination issues, these algorithms can still leak
sensitive information, such as individuals' health or financial records.
Utilizing the notion of differential privacy (DP), prior works aimed at
developing learning algorithms that are both private and fair. However,
existing algorithms for DP fair learning are either not guaranteed to converge
or require full batch of data in each iteration of the algorithm to converge.
In this paper, we provide the first stochastic differentially private algorithm
for fair learning that is guaranteed to converge. Here, the term "stochastic"
refers to the fact that our proposed algorithm converges even when minibatches
of data are used at each iteration (i.e. stochastic optimization). Our
framework is flexible enough to permit different fairness notions, including
demographic parity and equalized odds. In addition, our algorithm can be
applied to non-binary classification tasks with multiple (non-binary) sensitive
attributes. As a byproduct of our convergence analysis, we provide the first
utility guarantee for a DP algorithm for solving nonconvex-strongly concave
min-max problems. Our numerical experiments show that the proposed algorithm
consistently offers significant performance gains over the state-of-the-art
baselines, and can be applied to larger scale problems with non-binary
target/sensitive attributes.
- Abstract(参考訳): 機械学習モデルは、高度な意思決定システムでますます使われている。
このようなアプリケーションでは、これらのモデルが特定の人種、性別、年齢といった特定の人口集団に対して差別されることがある。
これらのアプリケーションにおけるもうひとつの大きな懸念は、ユーザのプライバシ侵害である。
差別問題を緩和するために公正な学習アルゴリズムが開発されているが、これらのアルゴリズムは個人の健康や財務記録などの機密情報を漏洩することができる。
ディファレンシャルプライバシ(DP)の概念を利用することで、従来はプライベートかつフェアな学習アルゴリズムの開発を目標としていた。
しかし、dpフェアラーニングのための既存のアルゴリズムは、収束を保証されないか、アルゴリズムの各イテレーションで全データのバッチを必要とする。
本稿では,収束が保証されるフェアラーニングのための最初の確率的微分プライベートアルゴリズムを提案する。
ここで「確率的」という用語は、各イテレーションでデータのミニバッチ(すなわち確率的最適化)が使われても提案アルゴリズムが収束するという事実を指す。
われわれのフレームワークは、人口的平等や等化確率など、さまざまな公平性の概念を許容できるほど柔軟である。
さらに,本アルゴリズムは,複数の(非バイナリ)感度属性を持つ非バイナリ分類タスクに適用可能である。
収束解析の副産物として,非凸強凸min-max問題を解くdpアルゴリズムに対する最初の実用的保証を提供する。
数値実験により,提案アルゴリズムは最先端のベースラインよりも高い性能を示し,非バイナリターゲット/感度特性の大規模問題に適用可能であることが示された。
関連論文リスト
- A Stochastic Optimization Framework for Private and Fair Learning From Decentralized Data [14.748203847227542]
プライベート・フェア・フェデレーション・ラーニング(FL)のための新しいアルゴリズムを開発した。
我々のアルゴリズムは、サイロ間レコードレベル差分プライバシー(ISRL-DP)を満たす。
実験では、さまざまなプライバシレベルにわたるアルゴリズムのトレードオフとして、最先端の公正性・正確性フレームワークが実証されている。
論文 参考訳(メタデータ) (2024-11-12T15:51:35Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
類似度スコア(Similarity score)とは、論文のレビューにおいて、レビュアーの専門知識を数値で見積もるものである。
私たちのデータセットは、58人の研究者による477の自己申告された専門知識スコアで構成されています。
2つの論文をレビュアーに関連付けるタスクは、簡単なケースでは12%~30%、ハードケースでは36%~43%である。
論文 参考訳(メタデータ) (2023-03-23T16:15:03Z) - Differentially Private Federated Learning via Inexact ADMM with Multiple
Local Updates [0.0]
我々は,複数の局所的な更新を施した乗算器アルゴリズムのDP不正確な交互方向法を開発した。
当社のアルゴリズムでは,各イテレーション毎に$barepsilon$-DPを提供しており,$barepsilon$はユーザが管理するプライバシ予算である。
提案アルゴリズムは,既存のDPアルゴリズムと比較してテストエラーを少なくとも31%削減すると同時に,データプライバシのレベルが同じであることを実証する。
論文 参考訳(メタデータ) (2022-02-18T19:58:47Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - FAIRLEARN:Configurable and Interpretable Algorithmic Fairness [1.2183405753834557]
トレーニングサンプルから生じるバイアスや、データサンプルに関する暗黙の仮定を緩和する必要がある。
最適化の異なる段階でバイアスを検出し緩和することで、学習アルゴリズムを公平にするために多くのアプローチが提案されている。
本稿では,ユーザの制約を最適化手順に組み込むことで,公平なアルゴリズムを生成するFAIRLEARN手順を提案する。
論文 参考訳(メタデータ) (2021-11-17T03:07:18Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Differentially Private Federated Learning via Inexact ADMM [0.0]
差分プライバシー(DP)技術は、データプライバシを推論攻撃から保護するために、フェデレーション付き学習モデルに適用することができる。
我々は,信頼領域のサブプロブレム列を解く乗算器アルゴリズムのDP不正確な交互方向法を開発した。
提案アルゴリズムは,既存のDPアルゴリズムと比較してテストエラーを少なくとも22%削減すると同時に,データプライバシのレベルも同等に向上する。
論文 参考訳(メタデータ) (2021-06-11T02:28:07Z) - Double Coverage with Machine-Learned Advice [100.23487145400833]
オンラインの基本的な$k$-serverの問題を学習強化環境で研究する。
我々のアルゴリズムは任意の k に対してほぼ最適の一貫性-破壊性トレードオフを達成することを示す。
論文 参考訳(メタデータ) (2021-03-02T11:04:33Z) - Tighter Generalization Bounds for Iterative Differentially Private
Learning Algorithms [95.73230376153872]
本稿では,反復学習アルゴリズムにおける一般化とプライバシ保護の関係を2つのステップで検討する。
我々は、$(varepsilon, delta)$-differential privacyは、マルチデータベース学習アルゴリズムに縛られる平均的な一般化を意味することを証明している。
次に,ほとんどの学習アルゴリズムが共有する反復的な性質が,プライバシーの保護とさらなる一般化にどのように影響するかを検討する。
論文 参考訳(メタデータ) (2020-07-18T09:12:03Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
生存分析(SA)は、自然に検閲されたデータをサポートし、アルゴリズムランタイムの分散モデルを学習するためにそのようなデータを使用する適切な方法を提供する。
我々は、アルゴリズム選択に対する洗練された決定論的アプローチの基礎として、そのようなモデルを活用し、Run2Surviveを疑う。
標準ベンチマークASlibによる広範な実験では、我々のアプローチは競争力が高く、多くの場合、最先端のASアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2020-07-06T15:20:17Z) - Differentially Private k-Means Clustering with Guaranteed Convergence [5.335316436366718]
反復的なクラスタリングアルゴリズムは、データの背後にある洞察を学習するのに役立ちます。
敵は、背景知識によって個人のプライバシーを推測することができる。
このような推論攻撃に対して個人のプライバシを保護するため、反復クラスタリングアルゴリズムの差分プライバシー(DP)を広く研究している。
論文 参考訳(メタデータ) (2020-02-03T22:53:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。