Bootstrapping the Relationship Between Images and Their Clean and Noisy
Labels
- URL: http://arxiv.org/abs/2210.08826v1
- Date: Mon, 17 Oct 2022 08:15:55 GMT
- Title: Bootstrapping the Relationship Between Images and Their Clean and Noisy
Labels
- Authors: Brandon Smart and Gustavo Carneiro
- Abstract summary: We propose a new training algorithm that relies on a simple model to learn the relationship between clean and noisy labels.
By learning this relationship, we achieve state-of-the-art performance in asymmetric and instance-dependent label noise problems.
- Score: 14.16958860081955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many state-of-the-art noisy-label learning methods rely on learning
mechanisms that estimate the samples' clean labels during training and discard
their original noisy labels. However, this approach prevents the learning of
the relationship between images, noisy labels and clean labels, which has been
shown to be useful when dealing with instance-dependent label noise problems.
Furthermore, methods that do aim to learn this relationship require cleanly
annotated subsets of data, as well as distillation or multi-faceted models for
training. In this paper, we propose a new training algorithm that relies on a
simple model to learn the relationship between clean and noisy labels without
the need for a cleanly labelled subset of data. Our algorithm follows a 3-stage
process, namely: 1) self-supervised pre-training followed by an early-stopping
training of the classifier to confidently predict clean labels for a subset of
the training set; 2) use the clean set from stage (1) to bootstrap the
relationship between images, noisy labels and clean labels, which we exploit
for effective relabelling of the remaining training set using semi-supervised
learning; and 3) supervised training of the classifier with all relabelled
samples from stage (2). By learning this relationship, we achieve
state-of-the-art performance in asymmetric and instance-dependent label noise
problems.
Related papers
- Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - Determined Multi-Label Learning via Similarity-Based Prompt [12.428779617221366]
In multi-label classification, each training instance is associated with multiple class labels simultaneously.
To alleviate this problem, a novel labeling setting termed textitDetermined Multi-Label Learning (DMLL) is proposed.
arXiv Detail & Related papers (2024-03-25T07:08:01Z) - Pseudo-labelling meets Label Smoothing for Noisy Partial Label Learning [8.387189407144403]
Partial label learning (PLL) is a weakly-supervised learning paradigm where each training instance is paired with a set of candidate labels (partial label)
NPLL relaxes this constraint by allowing some partial labels to not contain the true label, enhancing the practicality of the problem.
We present a minimalistic framework that initially assigns pseudo-labels to images by exploiting the noisy partial labels through a weighted nearest neighbour algorithm.
arXiv Detail & Related papers (2024-02-07T13:32:47Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
We introduce a novel conditional image generation framework that accepts noisy-labeled and uncurated data during training.
We propose soft curriculum learning, which assigns instance-wise weights for adversarial training while assigning new labels for unlabeled data.
Our experiments show that our approach outperforms existing semi-supervised and label-noise robust methods in terms of both quantitative and qualitative performance.
arXiv Detail & Related papers (2023-07-17T08:31:59Z) - Asymmetric Co-teaching with Multi-view Consensus for Noisy Label
Learning [15.690502285538411]
We introduce our noisy-label learning approach, called Asymmetric Co-teaching (AsyCo)
AsyCo produces more consistent divergent results of the co-teaching models.
Experiments on synthetic and real-world noisy-label datasets show that AsyCo improves over current SOTA methods.
arXiv Detail & Related papers (2023-01-01T04:10:03Z) - Sample Prior Guided Robust Model Learning to Suppress Noisy Labels [8.119439844514973]
We propose PGDF, a novel framework to learn a deep model to suppress noise by generating the samples' prior knowledge.
Our framework can save more informative hard clean samples into the cleanly labeled set.
We evaluate our method using synthetic datasets based on CIFAR-10 and CIFAR-100, as well as on the real-world datasets WebVision and Clothing1M.
arXiv Detail & Related papers (2021-12-02T13:09:12Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
Being able to segment unseen classes not observed during training is an important technical challenge in deep learning.
Prior zero-label semantic segmentation works approach this task by learning visual-semantic embeddings or generative models.
We propose a consistency regularizer to filter out noisy pseudo-labels by taking the intersections of the pseudo-labels generated from different augmentations of the same image.
arXiv Detail & Related papers (2021-04-21T14:34:33Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
The presence of label noise often misleads the training of deep neural networks.
We show that the errors in human-annotated labels are more likely to be dependent on the difficulty levels of tasks.
arXiv Detail & Related papers (2020-12-22T06:36:58Z) - EvidentialMix: Learning with Combined Open-set and Closed-set Noisy
Labels [30.268962418683955]
We study a new variant of the noisy label problem that combines the open-set and closed-set noisy labels.
Our results show that our method produces superior classification results and better feature representations than previous state-of-the-art methods.
arXiv Detail & Related papers (2020-11-11T11:15:32Z) - Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels [98.13491369929798]
We propose a framework called Class2Simi, which transforms data points with noisy class labels to data pairs with noisy similarity labels.
Class2Simi is computationally efficient because not only this transformation is on-the-fly in mini-batches, but also it just changes loss on top of model prediction into a pairwise manner.
arXiv Detail & Related papers (2020-06-14T07:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.