Extracting Clean and Balanced Subset for Noisy Long-tailed Classification
- URL: http://arxiv.org/abs/2404.06795v1
- Date: Wed, 10 Apr 2024 07:34:37 GMT
- Title: Extracting Clean and Balanced Subset for Noisy Long-tailed Classification
- Authors: Zhuo Li, He Zhao, Zhen Li, Tongliang Liu, Dandan Guo, Xiang Wan,
- Abstract summary: We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
- Score: 66.47809135771698
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Real-world datasets usually are class-imbalanced and corrupted by label noise. To solve the joint issue of long-tailed distribution and label noise, most previous works usually aim to design a noise detector to distinguish the noisy and clean samples. Despite their effectiveness, they may be limited in handling the joint issue effectively in a unified way. In this work, we develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching, which can be solved with optimal transport (OT). By setting a manually-specific probability measure and using a learned transport plan to pseudo-label the training samples, the proposed method can reduce the side-effects of noisy and long-tailed data simultaneously. Then we introduce a simple yet effective filter criteria by combining the observed labels and pseudo labels to obtain a more balanced and less noisy subset for a robust model training. Extensive experiments demonstrate that our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
Related papers
- Learning from Noisy Labels for Long-tailed Data via Optimal Transport [2.8821062918162146]
We propose a novel approach to manage data characterized by both long-tailed distributions and noisy labels.
We employ optimal transport strategies to generate pseudo-labels for the noise set in a semi-supervised training manner.
arXiv Detail & Related papers (2024-08-07T14:15:18Z) - Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - Co-Learning Meets Stitch-Up for Noisy Multi-label Visual Recognition [70.00984078351927]
This paper focuses on reducing noise based on some inherent properties of multi-label classification and long-tailed learning under noisy cases.
We propose a Stitch-Up augmentation to synthesize a cleaner sample, which directly reduces multi-label noise.
A Heterogeneous Co-Learning framework is further designed to leverage the inconsistency between long-tailed and balanced distributions.
arXiv Detail & Related papers (2023-07-03T09:20:28Z) - Combating Noisy Labels in Long-Tailed Image Classification [33.40963778043824]
This paper makes an early effort to tackle the image classification task with both long-tailed distribution and label noise.
Existing noise-robust learning methods cannot work in this scenario as it is challenging to differentiate noisy samples from clean samples of tail classes.
We propose a new learning paradigm based on matching between inferences on weak and strong data augmentations to screen out noisy samples.
arXiv Detail & Related papers (2022-09-01T07:31:03Z) - Learning from Noisy Labels with Coarse-to-Fine Sample Credibility
Modeling [22.62790706276081]
Training deep neural network (DNN) with noisy labels is practically challenging.
Previous efforts tend to handle part or full data in a unified denoising flow.
We propose a coarse-to-fine robust learning method called CREMA to handle noisy data in a divide-and-conquer manner.
arXiv Detail & Related papers (2022-08-23T02:06:38Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Robust Long-Tailed Learning under Label Noise [50.00837134041317]
This work investigates the label noise problem under long-tailed label distribution.
We propose a robust framework,algo, that realizes noise detection for long-tailed learning.
Our framework can naturally leverage semi-supervised learning algorithms to further improve the generalisation.
arXiv Detail & Related papers (2021-08-26T03:45:00Z) - Open-set Label Noise Can Improve Robustness Against Inherent Label Noise [27.885927200376386]
We show that open-set noisy labels can be non-toxic and even benefit the robustness against inherent noisy labels.
We propose a simple yet effective regularization by introducing Open-set samples with Dynamic Noisy Labels (ODNL) into training.
arXiv Detail & Related papers (2021-06-21T07:15:50Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.