Pruning-based Topology Refinement of 3D Mesh using a 2D Alpha Mask
- URL: http://arxiv.org/abs/2210.09148v1
- Date: Mon, 17 Oct 2022 14:51:38 GMT
- Title: Pruning-based Topology Refinement of 3D Mesh using a 2D Alpha Mask
- Authors: Ga\"etan Landreau and Mohamed Tamaazousti
- Abstract summary: We present a method to refine the topology of any 3D mesh through a face-pruning strategy.
Our solution leverages a differentiable that renders each face as a 2D soft map.
Because our module is agnostic to the network that produces the 3D mesh, it can be easily plugged into any self-supervised image-based 3D reconstruction pipeline.
- Score: 6.103988053817792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based 3D reconstruction has increasingly stunning results over the past
few years with the latest improvements in computer vision and graphics.
Geometry and topology are two fundamental concepts when dealing with 3D mesh
structures. But the latest often remains a side issue in the 3D mesh-based
reconstruction literature. Indeed, performing per-vertex elementary
displacements over a 3D sphere mesh only impacts its geometry and leaves the
topological structure unchanged and fixed. Whereas few attempts propose to
update the geometry and the topology, all need to lean on costly 3D
ground-truth to determine the faces/edges to prune. We present in this work a
method that aims to refine the topology of any 3D mesh through a face-pruning
strategy that extensively relies upon 2D alpha masks and camera pose
information. Our solution leverages a differentiable renderer that renders each
face as a 2D soft map. Its pixel intensity reflects the probability of being
covered during the rendering process by such a face. Based on the 2D soft-masks
available, our method is thus able to quickly highlight all the incorrectly
rendered faces for a given viewpoint. Because our module is agnostic to the
network that produces the 3D mesh, it can be easily plugged into any
self-supervised image-based (either synthetic or natural) 3D reconstruction
pipeline to get complex meshes with a non-spherical topology.
Related papers
- 3D-GANTex: 3D Face Reconstruction with StyleGAN3-based Multi-View Images and 3DDFA based Mesh Generation [0.8479659578608233]
This paper introduces a novel method for texture estimation from a single image by first using StyleGAN and 3D Morphable Models.
The result shows that the generated mesh is of high quality with near to accurate texture representation.
arXiv Detail & Related papers (2024-10-21T13:42:06Z) - 3DStyle-Diffusion: Pursuing Fine-grained Text-driven 3D Stylization with
2D Diffusion Models [102.75875255071246]
3D content creation via text-driven stylization has played a fundamental challenge to multimedia and graphics community.
We propose a new 3DStyle-Diffusion model that triggers fine-grained stylization of 3D meshes with additional controllable appearance and geometric guidance from 2D Diffusion models.
arXiv Detail & Related papers (2023-11-09T15:51:27Z) - Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion [115.82306502822412]
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing.
A corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing.
We study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures.
arXiv Detail & Related papers (2022-12-14T18:49:50Z) - Monocular 3D Object Reconstruction with GAN Inversion [122.96094885939146]
MeshInversion is a novel framework to improve the reconstruction of textured 3D meshes.
It exploits the generative prior of a 3D GAN pre-trained for 3D textured mesh synthesis.
Our framework obtains faithful 3D reconstructions with consistent geometry and texture across both observed and unobserved parts.
arXiv Detail & Related papers (2022-07-20T17:47:22Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - Topologically Consistent Multi-View Face Inference Using Volumetric
Sampling [25.001398662643986]
ToFu is a geometry inference framework that can produce topologically consistent meshes across identities and expressions.
A novel progressive mesh generation network embeds the topological structure of the face in a feature volume.
These high-quality assets are readily usable by production studios for avatar creation, animation and physically-based skin rendering.
arXiv Detail & Related papers (2021-10-06T17:55:08Z) - An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering [0.0]
Differentiable rendering is a very successful technique that applies to a Single-View 3D Reconstruction.
Currents use losses based on pixels between a rendered image of some 3D reconstructed object and ground-truth images from given matched viewpoints to optimise parameters of the 3D shape.
We propose a novel effective loss function that evaluates how well the projections of reconstructed 3D point clouds cover the ground truth object's silhouette.
arXiv Detail & Related papers (2021-03-05T00:02:18Z) - NeuTex: Neural Texture Mapping for Volumetric Neural Rendering [48.83181790635772]
We present an approach that explicitly disentangles geometry--represented as a continuous 3D volume--from appearance--represented as a continuous 2D texture map.
We demonstrate that this representation can be reconstructed using only multi-view image supervision and generates high-quality rendering results.
arXiv Detail & Related papers (2021-03-01T05:34:51Z) - Do 2D GANs Know 3D Shape? Unsupervised 3D shape reconstruction from 2D
Image GANs [156.1209884183522]
State-of-the-art 2D generative models like GANs show unprecedented quality in modeling the natural image manifold.
We present the first attempt to directly mine 3D geometric cues from an off-the-shelf 2D GAN that is trained on RGB images only.
arXiv Detail & Related papers (2020-11-02T09:38:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.