Monocular 3D Object Reconstruction with GAN Inversion
- URL: http://arxiv.org/abs/2207.10061v1
- Date: Wed, 20 Jul 2022 17:47:22 GMT
- Title: Monocular 3D Object Reconstruction with GAN Inversion
- Authors: Junzhe Zhang, Daxuan Ren, Zhongang Cai, Chai Kiat Yeo, Bo Dai, Chen
Change Loy
- Abstract summary: MeshInversion is a novel framework to improve the reconstruction of textured 3D meshes.
It exploits the generative prior of a 3D GAN pre-trained for 3D textured mesh synthesis.
Our framework obtains faithful 3D reconstructions with consistent geometry and texture across both observed and unobserved parts.
- Score: 122.96094885939146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recovering a textured 3D mesh from a monocular image is highly challenging,
particularly for in-the-wild objects that lack 3D ground truths. In this work,
we present MeshInversion, a novel framework to improve the reconstruction by
exploiting the generative prior of a 3D GAN pre-trained for 3D textured mesh
synthesis. Reconstruction is achieved by searching for a latent space in the 3D
GAN that best resembles the target mesh in accordance with the single view
observation. Since the pre-trained GAN encapsulates rich 3D semantics in terms
of mesh geometry and texture, searching within the GAN manifold thus naturally
regularizes the realness and fidelity of the reconstruction. Importantly, such
regularization is directly applied in the 3D space, providing crucial guidance
of mesh parts that are unobserved in the 2D space. Experiments on standard
benchmarks show that our framework obtains faithful 3D reconstructions with
consistent geometry and texture across both observed and unobserved parts.
Moreover, it generalizes well to meshes that are less commonly seen, such as
the extended articulation of deformable objects. Code is released at
https://github.com/junzhezhang/mesh-inversion
Related papers
- MOSE: Monocular Semantic Reconstruction Using NeRF-Lifted Noisy Priors [11.118490283303407]
We propose a neural field semantic reconstruction approach to lift inferred image-level noisy priors to 3D.
Our method produces accurate semantics and geometry in both 3D and 2D space.
arXiv Detail & Related papers (2024-09-21T05:12:13Z) - Iterative Superquadric Recomposition of 3D Objects from Multiple Views [77.53142165205283]
We propose a framework, ISCO, to recompose an object using 3D superquadrics as semantic parts directly from 2D views.
Our framework iteratively adds new superquadrics wherever the reconstruction error is high.
It provides consistently more accurate 3D reconstructions, even from images in the wild.
arXiv Detail & Related papers (2023-09-05T10:21:37Z) - Sampling is Matter: Point-guided 3D Human Mesh Reconstruction [0.0]
This paper presents a simple yet powerful method for 3D human mesh reconstruction from a single RGB image.
Experimental results on benchmark datasets show that the proposed method efficiently improves the performance of 3D human mesh reconstruction.
arXiv Detail & Related papers (2023-04-19T08:45:26Z) - Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion [115.82306502822412]
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing.
A corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing.
We study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures.
arXiv Detail & Related papers (2022-12-14T18:49:50Z) - Pruning-based Topology Refinement of 3D Mesh using a 2D Alpha Mask [6.103988053817792]
We present a method to refine the topology of any 3D mesh through a face-pruning strategy.
Our solution leverages a differentiable that renders each face as a 2D soft map.
Because our module is agnostic to the network that produces the 3D mesh, it can be easily plugged into any self-supervised image-based 3D reconstruction pipeline.
arXiv Detail & Related papers (2022-10-17T14:51:38Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - DensePose 3D: Lifting Canonical Surface Maps of Articulated Objects to
the Third Dimension [71.71234436165255]
We contribute DensePose 3D, a method that can learn such reconstructions in a weakly supervised fashion from 2D image annotations only.
Because it does not require 3D scans, DensePose 3D can be used for learning a wide range of articulated categories such as different animal species.
We show significant improvements compared to state-of-the-art non-rigid structure-from-motion baselines on both synthetic and real data on categories of humans and animals.
arXiv Detail & Related papers (2021-08-31T18:33:55Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
We propose a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives.
Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives.
Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.
arXiv Detail & Related papers (2020-04-02T17:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.