論文の概要: RibSeg v2: A Large-scale Benchmark for Rib Labeling and Anatomical
Centerline Extraction
- arxiv url: http://arxiv.org/abs/2210.09309v1
- Date: Tue, 18 Oct 2022 00:55:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 14:11:55.437041
- Title: RibSeg v2: A Large-scale Benchmark for Rib Labeling and Anatomical
Centerline Extraction
- Title(参考訳): RibSeg v2: Rib Labelingと解剖学的中心線抽出のための大規模ベンチマーク
- Authors: Liang Jin, Shixuan Gu, Donglai Wei, Kaiming Kuang, Hanspeter Pfister,
Bingbing Ni, Jiancheng Yang, Ming Li
- Abstract要約: バイナリリブセグメンテーションタスクの以前のデータセット(RibSeg)を、RibSeg v2という包括的なベンチマークに拡張しています。
RibSeg v2に基づいて,リブラベリングのための深層学習に基づく手法と,中心線抽出のためのスケルトン化に基づく手法を含むパイプラインを開発する。
- 参考スコア(独自算出の注目度): 53.54301488248013
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic rib labeling and anatomical centerline extraction are common
prerequisites for various clinical applications. Prior studies either use
in-house datasets that are inaccessible to communities, or focus on rib
segmentation that neglects the clinical significance of rib labeling. To
address these issues, we extend our prior dataset (RibSeg) on the binary rib
segmentation task to a comprehensive benchmark, named RibSeg v2, with 660 CT
scans (15,466 individual ribs in total) and annotations manually inspected by
experts for rib labeling and anatomical centerline extraction. Based on the
RibSeg v2, we develop a pipeline including deep learning-based methods for rib
labeling, and a skeletonization-based method for centerline extraction. To
improve computational efficiency, we propose a sparse point cloud
representation of CT scans and compare it with standard dense voxel grids.
Moreover, we design and analyze evaluation metrics to address the key
challenges of each task. Our dataset, code, and model are available online to
facilitate open research at https://github.com/M3DV/RibSeg
- Abstract(参考訳): 各種臨床応用において, 自動リブラベリングと解剖学的中心線抽出が必須条件である。
以前の研究では、コミュニティにアクセスできない社内データセットを使用するか、リブラベルの臨床的意義を無視したリブセグメンテーションにフォーカスする。
これらの問題に対処するため、バイナリリブセグメンテーションタスクの以前のデータセット(RibSeg)を、660個のCTスキャン(15,466個の個々のリブ)と、リブラベリングや解剖学的中心線抽出の専門家が手作業で検査したアノテーションで、RibSeg v2という包括的なベンチマークに拡張しました。
RibSeg v2に基づいて,リブラベリングのための深層学習に基づく手法と,中心線抽出のための骨格化に基づく手法を含むパイプラインを開発する。
計算効率を向上させるため,CTスキャンのスパース点クラウド表現を提案し,標準密度のボクセルグリッドと比較した。
さらに,各タスクの課題に対処するため,評価指標の設計と分析を行う。
私たちのデータセット、コード、モデルは、https://github.com/m3dv/ribsegでオープンリサーチを容易にするためにオンラインで利用可能です。
関連論文リスト
- Deep Rib Fracture Instance Segmentation and Classification from CT on
the RibFrac Challenge [66.86170104167608]
RibFrac Challengeは、660のCTスキャンから5,000以上のリブ骨折のベンチマークデータセットを提供する。
MICCAI 2020チャレンジ期間中に243つの結果が評価され、7つのチームがチャレンジサマリーに参加するために招待された。
この分析により、いくつかのトップリブ骨折検出ソリューションが、人間の専門家と同等かそれ以上の性能を達成したことが明らかになった。
論文 参考訳(メタデータ) (2024-02-14T18:18:33Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
我々は533巻のボクセルレベルのラベルを142ドル(約1万2000円)で、全身CTスキャンのデータセットを作成し、解剖学的包括的カバレッジを提供する。
提案手法はラベル集約段階において手作業によるアノテーションに依存しない。
我々はCTデータに142ドルの解剖学的構造を予測できる統一解剖学的セグメンテーションモデルをリリースする。
論文 参考訳(メタデータ) (2023-07-25T09:48:13Z) - A Dataset for Deep Learning-based Bone Structure Analyses in Total Hip
Arthroplasty [8.604089365903029]
全股関節解剖(THA)は整形外科において広く用いられている外科手術である。
ディープラーニング技術は有望だが、学習には高品質なラベル付きデータが必要である。
ディープラーニング指向のデータセットを生成するための効率的なデータアノテーションパイプラインを提案する。
論文 参考訳(メタデータ) (2023-06-07T16:28:53Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query
Embedding [15.98677736544302]
本稿では,3次元医療データ中の解剖の検出,識別,セグメンテーションを行うための,安定かつ堅牢で効率的な計算フレームワークを提案する。
解剖学の複雑な形状、大きさ、配向を考えると、9自由度(9-DoF)のポーズ推定解をフル3次元空間で提示する。
胸骨, 脊椎, 腹部臓器の3つの画像解析課題について, 提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2022-12-05T04:04:21Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - RibSeg Dataset and Strong Point Cloud Baselines for Rib Segmentation
from CT Scans [62.16198969529679]
CT(Computed tomography)スキャンにおける手動リブ検査は臨床的に重要であるが、労働集約的である。
公開データセットから490個のCTスキャン(11,719個のリブ)を含むラベル付きリブセグメンテーションベンチマークemphRibSegを開発した。
入力からスパルスボクセルをしきい値とし,リブセグメンテーションのための点群ベースライン法を設計した。
論文 参考訳(メタデータ) (2021-09-17T16:17:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。