A tradeoff between universality of equivariant models and learnability
of symmetries
- URL: http://arxiv.org/abs/2210.09444v1
- Date: Mon, 17 Oct 2022 21:23:22 GMT
- Title: A tradeoff between universality of equivariant models and learnability
of symmetries
- Authors: Vasco Portilheiro
- Abstract summary: We prove that it is impossible to simultaneously learn symmetries and functions equivariant under certain conditions.
We analyze certain families of neural networks for whether they satisfy the conditions of the impossibility result.
On the practical side, our analysis of group-convolutional neural networks allows us generalize the well-known convolution is all you need'' to non-homogeneous spaces.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We prove an impossibility result, which in the context of function learning
says the following: under certain conditions, it is impossible to
simultaneously learn symmetries and functions equivariant under them using an
ansatz consisting of equivariant functions. To formalize this statement, we
carefully study notions of approximation for groups and semigroups. We analyze
certain families of neural networks for whether they satisfy the conditions of
the impossibility result: what we call ``linearly equivariant'' networks, and
group-convolutional networks. A lot can be said precisely about linearly
equivariant networks, making them theoretically useful. On the practical side,
our analysis of group-convolutional neural networks allows us generalize the
well-known ``convolution is all you need'' theorem to non-homogeneous spaces.
We additionally find an important difference between group convolution and
semigroup convolution.
Related papers
- Symmetry Discovery for Different Data Types [52.2614860099811]
Equivariant neural networks incorporate symmetries into their architecture, achieving higher generalization performance.
We propose LieSD, a method for discovering symmetries via trained neural networks which approximate the input-output mappings of the tasks.
We validate the performance of LieSD on tasks with symmetries such as the two-body problem, the moment of inertia matrix prediction, and top quark tagging.
arXiv Detail & Related papers (2024-10-13T13:39:39Z) - A Characterization Theorem for Equivariant Networks with Point-wise
Activations [13.00676132572457]
We prove that rotation-equivariant networks can only be invariant, as it happens for any network which is equivariant with respect to connected compact groups.
We show that feature spaces of disentangled steerable convolutional neural networks are trivial representations.
arXiv Detail & Related papers (2024-01-17T14:30:46Z) - Harmonics of Learning: Universal Fourier Features Emerge in Invariant Networks [14.259918357897408]
We prove that, under certain conditions, if a neural network is invariant to a finite group then its weights recover the Fourier transform on that group.
This provides a mathematical explanation for the emergence of Fourier features -- a ubiquitous phenomenon in both biological and artificial learning systems.
arXiv Detail & Related papers (2023-12-13T22:42:55Z) - Lie Group Decompositions for Equivariant Neural Networks [12.139222986297261]
We show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations.
We evaluate the robustness and out-of-distribution generalisation capability of our model on the benchmark affine-invariant classification task.
arXiv Detail & Related papers (2023-10-17T16:04:33Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Capacity of Group-invariant Linear Readouts from Equivariant
Representations: How Many Objects can be Linearly Classified Under All
Possible Views? [21.06669693699965]
We find that the fraction of separable dichotomies is determined by the dimension of the space that is fixed by the group action.
We show how this relation extends to operations such as convolutions, element-wise nonlinearities, and global and local pooling.
arXiv Detail & Related papers (2021-10-14T15:46:53Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
We study the generalization of non commutative convolutional neural networks.
We show that non commutative convolutional architectures can be stable to deformations on the space of operators.
arXiv Detail & Related papers (2021-08-23T04:22:58Z) - Coordinate Independent Convolutional Networks -- Isometry and Gauge
Equivariant Convolutions on Riemannian Manifolds [70.32518963244466]
A major complication in comparison to flat spaces is that it is unclear in which alignment a convolution kernel should be applied on a manifold.
We argue that the particular choice of coordinatization should not affect a network's inference -- it should be coordinate independent.
A simultaneous demand for coordinate independence and weight sharing is shown to result in a requirement on the network to be equivariant.
arXiv Detail & Related papers (2021-06-10T19:54:19Z) - Universal Approximation Theorem for Equivariant Maps by Group CNNs [14.810452619505137]
This paper provides a unified method to obtain universal approximation theorems for equivariant maps by CNNs.
As its significant advantage, we can handle non-linear equivariant maps between infinite-dimensional spaces for non-compact groups.
arXiv Detail & Related papers (2020-12-27T07:09:06Z) - LieTransformer: Equivariant self-attention for Lie Groups [49.9625160479096]
Group equivariant neural networks are used as building blocks of group invariant neural networks.
We extend the scope of the literature to self-attention, that is emerging as a prominent building block of deep learning models.
We propose the LieTransformer, an architecture composed of LieSelfAttention layers that are equivariant to arbitrary Lie groups and their discrete subgroups.
arXiv Detail & Related papers (2020-12-20T11:02:49Z) - Coupling-based Invertible Neural Networks Are Universal Diffeomorphism
Approximators [72.62940905965267]
Invertible neural networks based on coupling flows (CF-INNs) have various machine learning applications such as image synthesis and representation learning.
Are CF-INNs universal approximators for invertible functions?
We prove a general theorem to show the equivalence of the universality for certain diffeomorphism classes.
arXiv Detail & Related papers (2020-06-20T02:07:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.