論文の概要: FIMP: Foundation Model-Informed Message Passing for Graph Neural
Networks
- arxiv url: http://arxiv.org/abs/2210.09475v3
- Date: Sun, 3 Mar 2024 15:26:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 04:19:38.014498
- Title: FIMP: Foundation Model-Informed Message Passing for Graph Neural
Networks
- Title(参考訳): FIMP: グラフニューラルネットワークのための基礎モデルインフォームドメッセージパッシング
- Authors: Syed Asad Rizvi, Nhi Nguyen, Haoran Lyu, Benjamin Christensen, Josue
Ortega Caro, Antonio H. O. Fonseca, Emanuele Zappala, Maryam Bagherian,
Christopher Averill, Chadi G. Abdallah, Amin Karbasi, Rex Ying, Maria Brbic,
Rahul Madhav Dhodapkar, David van Dijk
- Abstract要約: Foundation-Informed Message Passing (FIMP)は基礎モデルとグラフニューラルネットワーク(GNN)の分野を橋渡しする
この手法により,複数のデータ領域におけるグラフベースタスクの性能が向上することを示す。
- 参考スコア(独自算出の注目度): 29.640575974930325
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Foundation models have revolutionized the landscape of Deep Learning (DL),
serving as a versatile platform which can be adapted to a wide range of
downstream tasks. Despite their adaptability, applications of foundation models
to downstream graph-based tasks have been limited, and there remains no
convenient way to leverage large-scale non-graph pretrained models in
graph-structured settings. In this work, we present a new framework which we
term Foundation-Informed Message Passing (FIMP) to bridge the fields of
foundational models and GNNs through a simple concept: constructing
message-passing operators from pretrained foundation model weights. We show
that this approach results in improved performance for graph-based tasks in a
number of data domains, allowing graph neural networks to leverage the
knowledge of foundation models.
- Abstract(参考訳): ファンデーションモデルは、幅広い下流タスクに適応可能な汎用プラットフォームとして機能する、ディープラーニング(DL)のランドスケープに革命をもたらした。
その適応性にもかかわらず、ダウンストリームグラフベースのタスクへの基礎モデルの応用は限られており、グラフ構造設定で大規模非グラフプリトレーニングモデルを活用するための便利な方法はない。
本稿では、基礎モデルとGNNの分野を単純な概念で橋渡しするFIMP(Foundation-Informed Message Passing)と呼ばれる新しいフレームワークを提案する。
提案手法により,複数のデータ領域におけるグラフベースタスクの性能が向上し,基礎モデルの知識をグラフニューラルネットワークで活用できることが示唆された。
関連論文リスト
- GOFA: A Generative One-For-All Model for Joint Graph Language Modeling [38.267339613261996]
この問題を解決するために,新たに生成グラフ言語モデルGOFAを提案する。
GOFAは、新たに提案されたグラフレベルの次単語予測、質問応答、構造的タスクに基づいて事前訓練されている。
モデルは様々な下流タスクに基づいて評価され、ゼロショットシナリオにおける構造的および文脈的問題を解く強力な能力を示す。
論文 参考訳(メタデータ) (2024-07-12T22:23:51Z) - Efficient Model-Stealing Attacks Against Inductive Graph Neural Networks [4.552065156611815]
グラフニューラルネットワーク(GNN)は、グラフ構造で組織された実世界のデータを処理するための強力なツールとして認識されている。
事前に定義されたグラフ構造に依存しないグラフ構造化データの処理を可能にするインダクティブGNNは、広範囲のアプリケーションにおいてますます重要になりつつある。
本稿では,誘導型GNNに対して教師なしモデルステアリング攻撃を行う新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-20T18:01:15Z) - UniGraph: Learning a Unified Cross-Domain Foundation Model for Text-Attributed Graphs [30.635472655668078]
Text-Attributed Graphs (TAG) は、さまざまなドメインにまたがる見えないグラフやタスクに一般化することができる。
本稿では,言語モデル (LM) とグラフニューラルネットワーク (GNN) をバックボーンネットワークとして,新しいケースドアーキテクチャを提案する。
本モデルの有効性を,未確認グラフの自己教師型表現学習,少数ショットインコンテキスト転送,ゼロショット転送で実証する。
論文 参考訳(メタデータ) (2024-02-21T09:06:31Z) - Position: Graph Foundation Models are Already Here [53.737868336014735]
グラフ基礎モデル(GFM)は、グラフ領域において重要な研究トピックとして浮上している。
グラフ語彙の提唱によるGFM開発のための新しい視点」を提案する。
この観点は、将来のGFM設計を、ニューラルネットワークのスケーリング法則に従って前進させる可能性がある。
論文 参考訳(メタデータ) (2024-02-03T17:24:36Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - Addressing the Impact of Localized Training Data in Graph Neural
Networks [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習において顕著な成功を収めた。
本稿では,グラフの局所化部分集合に対するGNNのトレーニングの影響を評価することを目的とする。
本稿では,局所化学習データとグラフ推論との分散不一致を最小化する正規化手法を提案する。
論文 参考訳(メタデータ) (2023-07-24T11:04:22Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。