ODEs learn to walk: ODE-Net based data-driven modeling for crowd
dynamics
- URL: http://arxiv.org/abs/2210.09602v1
- Date: Tue, 18 Oct 2022 05:26:36 GMT
- Title: ODEs learn to walk: ODE-Net based data-driven modeling for crowd
dynamics
- Authors: Chen Cheng and Jinglai Li
- Abstract summary: We present a data-driven modeling approach based on the ODE-Net framework, for constructing continuous-time models of crowd dynamics.
We discuss some challenging issues in applying the ODE-Net method to such problems, which are primarily associated with the dimensionality of the underlying crowd system.
- Score: 3.4519649635864584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the behaviors of pedestrian crowds is of critical importance for a
variety of real-world problems. Data driven modeling, which aims to learn the
mathematical models from observed data, is a promising tool to construct models
that can make accurate predictions of such systems. In this work, we present a
data-driven modeling approach based on the ODE-Net framework, for constructing
continuous-time models of crowd dynamics. We discuss some challenging issues in
applying the ODE-Net method to such problems, which are primarily associated
with the dimensionality of the underlying crowd system, and we propose to
address these issues by incorporating the social-force concept in the ODE-Net
framework. Finally application examples are provided to demonstrate the
performance of the proposed method.
Related papers
- Towards Efficient Modelling of String Dynamics: A Comparison of State Space and Koopman based Deep Learning Methods [8.654571696634825]
State Space Models (SSM) and Koopman-based deep learning methods for modelling the dynamics of both linear and non-linear stiff strings.
Our findings indicate that our proposed Koopman-based model performs as well as or better than other existing approaches in non-linear cases for long-sequence modelling.
This research contributes insights into the physical modelling of dynamical systems by offering a comparative overview of these and previous methods and introducing innovative strategies for model improvement.
arXiv Detail & Related papers (2024-08-29T15:55:27Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
We introduce CodBench, an exhaustive benchmarking suite comprising 11 state-of-the-art data-driven models for solving differential equations.
Specifically, we evaluate 4 distinct categories of models, viz., feed forward neural networks, deep operator regression models, frequency-based neural operators, and transformer architectures.
We conduct extensive experiments, assessing the operators' capabilities in learning, zero-shot super-resolution, data efficiency, robustness to noise, and computational efficiency.
arXiv Detail & Related papers (2023-10-02T21:27:54Z) - Foundation Models for Decision Making: Problems, Methods, and
Opportunities [124.79381732197649]
Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks.
New paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning.
Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems.
arXiv Detail & Related papers (2023-03-07T18:44:07Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Learning Dynamics Models for Model Predictive Agents [28.063080817465934]
Model-Based Reinforcement Learning involves learning a textitdynamics model from data, and then using this model to optimise behaviour.
This paper sets out to disambiguate the role of different design choices for learning dynamics models, by comparing their performance to planning with a ground-truth model.
arXiv Detail & Related papers (2021-09-29T09:50:25Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
This paper introduces the constrained Sufficiently Accurate model learning approach.
It provides examples of such problems, and presents a theorem on how close some approximate solutions can be.
The approximate solution quality will depend on the function parameterization, loss and constraint function smoothness, and the number of samples in model learning.
arXiv Detail & Related papers (2021-02-11T16:27:31Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Learning Predictive Representations for Deformable Objects Using
Contrastive Estimation [83.16948429592621]
We propose a new learning framework that jointly optimize both the visual representation model and the dynamics model.
We show substantial improvements over standard model-based learning techniques across our rope and cloth manipulation suite.
arXiv Detail & Related papers (2020-03-11T17:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.