DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
- URL: http://arxiv.org/abs/2210.09634v4
- Date: Thu, 1 Aug 2024 05:09:34 GMT
- Title: DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
- Authors: Jianxin Wei, Ergute Bao, Xiaokui Xiao, Yin Yang,
- Abstract summary: differential privacy (DP) has become a well-accepted standard for privacy protection, and deep neural networks (DNN) have been immensely successful in machine learning.
A classic mechanism for this purpose is DP-SGD, which is a differentially private version of the gradient descent (SGD) commonly used for training.
We propose DPIS, a novel mechanism for differentially private SGD training that can be used as a drop-in replacement of the core of DP-SGD.
- Score: 23.8561225168394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, differential privacy (DP) has become a well-accepted standard for privacy protection, and deep neural networks (DNN) have been immensely successful in machine learning. The combination of these two techniques, i.e., deep learning with differential privacy, promises the privacy-preserving release of high-utility models trained with sensitive data such as medical records. A classic mechanism for this purpose is DP-SGD, which is a differentially private version of the stochastic gradient descent (SGD) optimizer commonly used for DNN training. Subsequent approaches have improved various aspects of the model training process, including noise decay schedule, model architecture, feature engineering, and hyperparameter tuning. However, the core mechanism for enforcing DP in the SGD optimizer remains unchanged ever since the original DP-SGD algorithm, which has increasingly become a fundamental barrier limiting the performance of DP-compliant machine learning solutions. Motivated by this, we propose DPIS, a novel mechanism for differentially private SGD training that can be used as a drop-in replacement of the core optimizer of DP-SGD, with consistent and significant accuracy gains over the latter. The main idea is to employ importance sampling (IS) in each SGD iteration for mini-batch selection, which reduces both sampling variance and the amount of random noise injected to the gradients that is required to satisfy DP. Integrating IS into the complex mathematical machinery of DP-SGD is highly non-trivial. DPIS addresses the challenge through novel mechanism designs, fine-grained privacy analysis, efficiency enhancements, and an adaptive gradient clipping optimization. Extensive experiments on four benchmark datasets, namely MNIST, FMNIST, CIFAR-10 and IMDb, demonstrate the superior effectiveness of DPIS over existing solutions for deep learning with differential privacy.
Related papers
- DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction [57.83978915843095]
This paper introduces DiSK, a novel framework designed to significantly enhance the performance of differentially private gradients.
To ensure practicality for large-scale training, we simplify the Kalman filtering process, minimizing its memory and computational demands.
arXiv Detail & Related papers (2024-10-04T19:30:39Z) - DOPPLER: Differentially Private Optimizers with Low-pass Filter for Privacy Noise Reduction [47.65999101635902]
Differentially private (DP) training prevents the leakage of sensitive information in the collected training data from trained machine learning models.
We develop a new component, called DOPPLER, which works by effectively amplifying the gradient while DP noise within this frequency domain.
Our experiments show that the proposed DPs with a lowpass filter outperform their counterparts without the filter by 3%-10% in test accuracy.
arXiv Detail & Related papers (2024-08-24T04:27:07Z) - DPAdapter: Improving Differentially Private Deep Learning through Noise
Tolerance Pre-training [33.935692004427175]
We introduce DPAdapter, a pioneering technique designed to amplify the model performance of DPML algorithms by enhancing parameter robustness.
Our experiments show that DPAdapter vastly enhances state-of-the-art DPML algorithms, increasing average accuracy from 72.92% to 77.09%.
arXiv Detail & Related papers (2024-03-05T00:58:34Z) - Private Fine-tuning of Large Language Models with Zeroth-order Optimization [51.19403058739522]
Differentially private gradient descent (DP-SGD) allows models to be trained in a privacy-preserving manner.
We introduce DP-ZO, a private fine-tuning framework for large language models by privatizing zeroth order optimization methods.
arXiv Detail & Related papers (2024-01-09T03:53:59Z) - Improving the Privacy and Practicality of Objective Perturbation for
Differentially Private Linear Learners [21.162924003105484]
This paper revamps the objective perturbation mechanism with tighter privacy analyses and new computational tools.
DP-SGD requires a non-trivial privacy overhead and a computational complexity which might be extravagant for simple models such as linear and logistic regression.
arXiv Detail & Related papers (2023-12-31T20:32:30Z) - Sparsity-Preserving Differentially Private Training of Large Embedding
Models [67.29926605156788]
DP-SGD is a training algorithm that combines differential privacy with gradient descent.
Applying DP-SGD naively to embedding models can destroy gradient sparsity, leading to reduced training efficiency.
We present two new algorithms, DP-FEST and DP-AdaFEST, that preserve gradient sparsity during private training of large embedding models.
arXiv Detail & Related papers (2023-11-14T17:59:51Z) - Automatic Clipping: Differentially Private Deep Learning Made Easier and
Stronger [39.93710312222771]
Per-example clipping is a key algorithmic step that enables practical differential private (DP) training for deep learning models.
We propose an easy-to-use replacement, called automatic clipping, that eliminates the need to tune R for any DPs.
arXiv Detail & Related papers (2022-06-14T19:49:44Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy (DP) provides a formal framework for training machine learning models with individual example level privacy.
Private training using DP-SGD protects against leakage by injecting noise into individual example gradients.
While this result is quite appealing, the computational cost of training large-scale models with DP-SGD is substantially higher than non-private training.
arXiv Detail & Related papers (2022-05-06T01:22:20Z) - Dynamic Differential-Privacy Preserving SGD [19.273542515320372]
Differentially-Private Gradient Descent (DP-SGD) prevents training-data privacy breaches by adding noise to the clipped gradient during SGD training.
The same clipping operation and additive noise across training steps results in unstable updates and even a ramp-up period.
We propose the dynamic DP-SGD, which has a lower privacy cost than the DP-SGD during updates until they achieve the same target privacy budget.
arXiv Detail & Related papers (2021-10-30T04:45:11Z) - Large Language Models Can Be Strong Differentially Private Learners [70.0317718115406]
Differentially Private (DP) learning has seen limited success for building large deep learning models of text.
We show that this performance drop can be mitigated with the use of large pretrained models.
We propose a memory saving technique that allows clipping in DP-SGD to run without instantiating per-example gradients.
arXiv Detail & Related papers (2021-10-12T01:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.