On the Convergence of DP-SGD with Adaptive Clipping
- URL: http://arxiv.org/abs/2412.19916v1
- Date: Fri, 27 Dec 2024 20:29:47 GMT
- Title: On the Convergence of DP-SGD with Adaptive Clipping
- Authors: Egor Shulgin, Peter Richtárik,
- Abstract summary: Gradient Descent with gradient clipping is a powerful technique for enabling differentially private optimization.
This paper provides the first comprehensive convergence analysis of SGD with quantile clipping (QC-SGD)
We show how QC-SGD suffers from a bias problem similar to constant-threshold clipped SGD but can be mitigated through a carefully designed quantile and step size schedule.
- Score: 56.24689348875711
- License:
- Abstract: Stochastic Gradient Descent (SGD) with gradient clipping is a powerful technique for enabling differentially private optimization. Although prior works extensively investigated clipping with a constant threshold, private training remains highly sensitive to threshold selection, which can be expensive or even infeasible to tune. This sensitivity motivates the development of adaptive approaches, such as quantile clipping, which have demonstrated empirical success but lack a solid theoretical understanding. This paper provides the first comprehensive convergence analysis of SGD with quantile clipping (QC-SGD). We demonstrate that QC-SGD suffers from a bias problem similar to constant-threshold clipped SGD but show how this can be mitigated through a carefully designed quantile and step size schedule. Our analysis reveals crucial relationships between quantile selection, step size, and convergence behavior, providing practical guidelines for parameter selection. We extend these results to differentially private optimization, establishing the first theoretical guarantees for DP-QC-SGD. Our findings provide theoretical foundations for widely used adaptive clipping heuristic and highlight open avenues for future research.
Related papers
- Bayesian Parameter Shift Rule in Variational Quantum Eigensolvers [4.431744869863552]
In this paper, we propose its Bayesian variant, where Gaussian processes with appropriate kernels are used to estimate the gradient of the VQE objective.
In gradient descent (SGD), the flexibility of Bayesian PSR allows the reuse of observations in previous steps, which accelerates the optimization process.
Our numerical experiments show that the VQE optimization with Bayesian PSR and GradCoRe significantly accelerates SGD and outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2025-02-04T14:44:31Z) - DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction [57.83978915843095]
This paper introduces DiSK, a novel framework designed to significantly enhance the performance of differentially private gradients.
To ensure practicality for large-scale training, we simplify the Kalman filtering process, minimizing its memory and computational demands.
arXiv Detail & Related papers (2024-10-04T19:30:39Z) - Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach [62.000948039914135]
Using Differentially Private Gradient Descent with Gradient Clipping (DPSGD-GC) to ensure Differential Privacy (DP) comes at the cost of model performance degradation.
We propose a new error-feedback (EF) DP algorithm as an alternative to DPSGD-GC.
We establish an algorithm-specific DP analysis for our proposed algorithm, providing privacy guarantees based on R'enyi DP.
arXiv Detail & Related papers (2023-11-24T17:56:44Z) - Differentially Private Learning with Per-Sample Adaptive Clipping [8.401653565794353]
We propose a Differentially Private Per-Sample Adaptive Clipping (DP-PSAC) algorithm based on a non-monotonic adaptive weight function.
We show that DP-PSAC outperforms or matches the state-of-the-art methods on multiple main-stream vision and language tasks.
arXiv Detail & Related papers (2022-12-01T07:26:49Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - Efficient Private SCO for Heavy-Tailed Data via Averaged Clipping [40.69950711262191]
We consider differentially private convex optimization for heavy-tailed data with the guarantee of being differentially private (DP)
We establish new convergence results and improved complexity bounds for the proposed algorithm called AClipped-dpSGD for constrained and unconstrained convex problems.
arXiv Detail & Related papers (2022-06-27T01:39:15Z) - Improving Differentially Private SGD via Randomly Sparsified Gradients [31.295035726077366]
Differentially private gradient observation (DP-SGD) has been widely adopted in deep learning to provide rigorously defined privacy bound compression.
We propose an and utilize RS to strengthen communication cost and strengthen privacy bound compression.
arXiv Detail & Related papers (2021-12-01T21:43:34Z) - A general sample complexity analysis of vanilla policy gradient [101.16957584135767]
Policy gradient (PG) is one of the most popular reinforcement learning (RL) problems.
"vanilla" theoretical understanding of PG trajectory is one of the most popular methods for solving RL problems.
arXiv Detail & Related papers (2021-07-23T19:38:17Z) - Understanding Gradient Clipping in Private SGD: A Geometric Perspective [68.61254575987013]
Deep learning models are increasingly popular in many machine learning applications where the training data may contain sensitive information.
Many learning systems now incorporate differential privacy by training their models with (differentially) private SGD.
A key step in each private SGD update is gradient clipping that shrinks the gradient of an individual example whenever its L2 norm exceeds some threshold.
arXiv Detail & Related papers (2020-06-27T19:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.