Clustering-based Aggregations for Prediction in Event Streams
- URL: http://arxiv.org/abs/2210.09738v1
- Date: Tue, 18 Oct 2022 10:30:42 GMT
- Title: Clustering-based Aggregations for Prediction in Event Streams
- Authors: Yorick Spenrath and Marwan Hassani and Boudewijn F. Van Dongen
- Abstract summary: We present CAPiES, a framework that focuses on this trade-off in an online setting.
By making predictions on a larger number of entities at a time, we improve the predictive accuracy but at the potential cost of usefulness.
We show the existence of the trade-off in two real-world scenarios: a supermarket with over 160 000 shoppers and a paint factory with over 171 000 invoices.
- Score: 0.537133760455631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the behaviour of shoppers provides valuable information for
retailers, such as the expected spend of a shopper or the total turnover of a
supermarket. The ability to make predictions on an individual level is useful,
as it allows supermarkets to accurately perform targeted marketing. However,
given the expected number of shoppers and their diverse behaviours, making
accurate predictions on an individual level is difficult. This problem does not
only arise in shopper behaviour, but also in various business processes, such
as predicting when an invoice will be paid. In this paper we present CAPiES, a
framework that focuses on this trade-off in an online setting. By making
predictions on a larger number of entities at a time, we improve the predictive
accuracy but at the potential cost of usefulness since we can say less about
the individual entities. CAPiES is developed in an online setting, where we
continuously update the prediction model and make new predictions over time. We
show the existence of the trade-off in an experimental evaluation in two
real-world scenarios: a supermarket with over 160 000 shoppers and a paint
factory with over 171 000 invoices.
Related papers
- Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.
As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.
We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - Early Churn Prediction from Large Scale User-Product Interaction Time
Series [0.0]
This paper conducts an exhaustive study on predicting user churn using historical data.
We aim to create a model forecasting customer churn likelihood, facilitating businesses in comprehending attrition trends and formulating effective retention plans.
arXiv Detail & Related papers (2023-09-25T08:44:32Z) - A Hybrid Statistical-Machine Learning Approach for Analysing Online
Customer Behavior: An Empirical Study [2.126171264016785]
We develop a hybrid interpretable model to analyse 454,897 online customers' behavior for a particular product category at the largest online retailer in China, that is JD.
Our results reveal that customers' product choice is insensitive to the promised delivery time, but this factor significantly impacts customers' order quantity.
We identify product classes for which certain discounting approaches are more effective and provide recommendations on better use of different discounting tools.
arXiv Detail & Related papers (2022-12-01T19:37:29Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
This work reports a method to learn the shopping preferences of frequent shoppers to an online gift store by combining ideas from retail analytics and statistical learning with sparsity.
arXiv Detail & Related papers (2021-11-11T05:36:39Z) - Predicting Customer Lifetime Values -- ecommerce use case [0.0]
This work compares two approaches to predict customer future purchases, first using a 'buy-till-you-die' statistical model to predict customer behavior and later using a neural network on the same dataset and comparing the results.
arXiv Detail & Related papers (2021-02-10T23:17:16Z) - OPAM: Online Purchasing-behavior Analysis using Machine learning [0.8121462458089141]
We present a customer purchasing behavior analysis system using supervised, unsupervised and semi-supervised learning methods.
The proposed system analyzes session and user-journey level purchasing behaviors to identify customer categories/clusters.
arXiv Detail & Related papers (2021-02-02T17:29:52Z) - Predicting seasonal influenza using supermarket retail records [59.18952050885709]
We consider supermarket retail data as a proxy signal for influenza, through the identification of sentinel baskets.
We make use of the Support Vector Regression (SVR) model to produce the predictions of seasonal flu incidence.
arXiv Detail & Related papers (2020-12-08T16:30:43Z) - Right Decisions from Wrong Predictions: A Mechanism Design Alternative
to Individual Calibration [107.15813002403905]
Decision makers often need to rely on imperfect probabilistic forecasts.
We propose a compensation mechanism ensuring that the forecasted utility matches the actually accrued utility.
We demonstrate an application showing how passengers could confidently optimize individual travel plans based on flight delay probabilities.
arXiv Detail & Related papers (2020-11-15T08:22:39Z) - Categorizing Online Shopping Behavior from Cosmetics to Electronics: An
Analytical Framework [3.6726589459214445]
The proposed framework is extendable to other large e-commerce data sets to obtain automated purchase predictions and descriptive consumer insights.
The proposed system achieves 97-99% classification accuracy and recall for user-journey level purchase predictions.
arXiv Detail & Related papers (2020-10-06T06:16:44Z) - Face to Purchase: Predicting Consumer Choices with Structured Facial and
Behavioral Traits Embedding [53.02059906193556]
We propose to predict consumers' purchases based on their facial features and purchasing histories.
We design a semi-supervised model based on a hierarchical embedding network to extract high-level features of consumers.
Our experimental results on a real-world dataset demonstrate the positive effect of incorporating facial information in predicting consumers' purchasing behaviors.
arXiv Detail & Related papers (2020-07-14T06:06:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.