Predicting Customer Lifetime Values -- ecommerce use case
- URL: http://arxiv.org/abs/2102.05771v1
- Date: Wed, 10 Feb 2021 23:17:16 GMT
- Title: Predicting Customer Lifetime Values -- ecommerce use case
- Authors: Ziv Pollak
- Abstract summary: This work compares two approaches to predict customer future purchases, first using a 'buy-till-you-die' statistical model to predict customer behavior and later using a neural network on the same dataset and comparing the results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Predicting customer future purchases and lifetime value is a key metrics for
managing marketing campaigns and optimizing marketing spend. This task is
specifically challenging when the relationships between the customer and the
firm are of a noncontractual nature and therefore the future purchases need to
be predicted based mostly on historical purchases. This work compares two
approaches to predict customer future purchases, first using a
'buy-till-you-die' statistical model to predict customer behavior and later
using a neural network on the same dataset and comparing the results. This
comparison will lead to both quantitative and qualitative analysis of those two
methods as well as recommendation on how to proceed in different cases and
opportunities for future research.
Related papers
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - A Hybrid Statistical-Machine Learning Approach for Analysing Online
Customer Behavior: An Empirical Study [2.126171264016785]
We develop a hybrid interpretable model to analyse 454,897 online customers' behavior for a particular product category at the largest online retailer in China, that is JD.
Our results reveal that customers' product choice is insensitive to the promised delivery time, but this factor significantly impacts customers' order quantity.
We identify product classes for which certain discounting approaches are more effective and provide recommendations on better use of different discounting tools.
arXiv Detail & Related papers (2022-12-01T19:37:29Z) - Estimating defection in subscription-type markets: empirical analysis
from the scholarly publishing industry [0.0]
We present the first empirical study on customer churn prediction in the scholarly publishing industry.
The study examines our proposed method for prediction on a customer subscription data over a period of 6.5 years.
We show that this approach can be both accurate as well as uniquely useful in the business-to-business context.
arXiv Detail & Related papers (2022-11-18T01:29:51Z) - Predictive analytics for appointment bookings [0.0]
The first model predicts whether a customer will show up for the meeting, while the second model indicates whether a customer will book a premium service.
Both models produce accurate results with more than a 75% accuracy rate.
This paper offers a framework for resource planning using the predicted demand.
arXiv Detail & Related papers (2022-04-18T14:02:15Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
This work reports a method to learn the shopping preferences of frequent shoppers to an online gift store by combining ideas from retail analytics and statistical learning with sparsity.
arXiv Detail & Related papers (2021-11-11T05:36:39Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - PreSizE: Predicting Size in E-Commerce using Transformers [76.33790223551074]
PreSizE is a novel deep learning framework which utilizes Transformers for accurate size prediction.
We demonstrate that PreSizE is capable of achieving superior prediction performance compared to previous state-of-the-art baselines.
As a proof of concept, we demonstrate that size predictions made by PreSizE can be effectively integrated into an existing production recommender system.
arXiv Detail & Related papers (2021-05-04T15:23:59Z) - Consumer Behaviour in Retail: Next Logical Purchase using Deep Neural
Network [0.0]
Accurate prediction of consumer purchase pattern enables better inventory planning and efficient personalized marketing strategies.
Nerve network architectures like Multi Layer Perceptron, Long Short Term Memory (LSTM), Temporal Convolutional Networks (TCN) and TCN-LSTM bring over ML models like Xgboost and RandomForest.
arXiv Detail & Related papers (2020-10-14T11:00:00Z) - Categorizing Online Shopping Behavior from Cosmetics to Electronics: An
Analytical Framework [3.6726589459214445]
The proposed framework is extendable to other large e-commerce data sets to obtain automated purchase predictions and descriptive consumer insights.
The proposed system achieves 97-99% classification accuracy and recall for user-journey level purchase predictions.
arXiv Detail & Related papers (2020-10-06T06:16:44Z) - Face to Purchase: Predicting Consumer Choices with Structured Facial and
Behavioral Traits Embedding [53.02059906193556]
We propose to predict consumers' purchases based on their facial features and purchasing histories.
We design a semi-supervised model based on a hierarchical embedding network to extract high-level features of consumers.
Our experimental results on a real-world dataset demonstrate the positive effect of incorporating facial information in predicting consumers' purchasing behaviors.
arXiv Detail & Related papers (2020-07-14T06:06:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.