Verifiable blind quantum computation with identity authentication for
different types of clients
- URL: http://arxiv.org/abs/2210.09830v1
- Date: Tue, 18 Oct 2022 13:21:34 GMT
- Title: Verifiable blind quantum computation with identity authentication for
different types of clients
- Authors: Junyu Quan, Qin Li, Lvzhou Li
- Abstract summary: Blind quantum computing (BQC) provides a solution for clients with limited quantum capabilities to delegate their quantum computation to remote quantum servers while keeping input, output, and even algorithm private.
In this paper, we propose three multi-party verifiable blind quantum computing (VBQC) protocols with identity authentication to handle clients with varying quantum capabilities in quantum networks.
- Score: 3.0058005235097123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing has considerable advantages in solving some problems over
its classical counterpart. Currently various physical systems are developed to
construct quantum computers but it is still challenging and the first use of
quantum computers may adopt the cloud style. Blind quantum computing (BQC)
provides a solution for clients with limited quantum capabilities to delegate
their quantum computation to remote quantum servers while keeping input,
output, and even algorithm private. In this paper, we propose three multi-party
verifiable blind quantum computing (VBQC) protocols with identity
authentication to handle clients with varying quantum capabilities in quantum
networks, such as those who can just make measurements, prepare single qubits,
or perform a few single-qubit gates. They are client-friendly and flexible
since the clients can achieve BQC depending on their own quantum devices and
resist both insider outsider attacks in quantum networks. Furthermore, all the
three proposed protocols are verifiable, namely that the clients can verify the
correctness of their calculations.
Related papers
- Experimental verifiable multi-client blind quantum computing on a Qline architecture [0.5018974919510384]
We provide the first experimental implementation of a two-client verifiable blind quantum computing protocol in a distributed architecture.
Results represent novel perspectives for the verification of multi-tenant distributed quantum computation in large-scale networks.
arXiv Detail & Related papers (2024-07-12T14:48:58Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Ancilla-driven blind quantum computation for clients with different
quantum capabilities [2.2591663389676295]
Blind quantum computation (BQC) allows a client with limited quantum power to delegate his quantum computational task to a powerful server.
This paper proposes two types of ADBQC protocols for clients with different quantum capabilities, such as performing single-qubit measurements or single-qubit gates.
arXiv Detail & Related papers (2022-10-18T14:12:34Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Delegating Multi-Party Quantum Computations vs. Dishonest Majority in
Two Quantum Rounds [0.0]
Multi-Party Quantum Computation (MPQC) has attracted a lot of attention as a potential killer-app for quantum networks.
We present a composable protocol achieving blindness and verifiability even in the case of a single honest client.
arXiv Detail & Related papers (2021-02-25T15:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.