論文の概要: Deep Scattering Spectrum germaneness to Fault Detection and Diagnosis
for Component-level Prognostics and Health Management (PHM)
- arxiv url: http://arxiv.org/abs/2210.09837v2
- Date: Wed, 19 Oct 2022 13:58:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 15:14:52.612148
- Title: Deep Scattering Spectrum germaneness to Fault Detection and Diagnosis
for Component-level Prognostics and Health Management (PHM)
- Title(参考訳): 成分レベルの予後・健康管理(phm)のための深部散乱スペクトルゲルマンネスと故障検出・診断
- Authors: Ali Rohan
- Abstract要約: 本研究は,産業用ロボットの機械的構成要素に対するDES(Deep Scattering Spectrum)の故障検出とデイグナシスとの関連性について考察する。
複数の産業用ロボットと異なる機械的欠陥を使って、障害を分類するアプローチを構築しました。
提案手法は, 実用試験台に実装され, 故障検出および診断において良好な性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In fault detection and diagnosis of prognostics and health management (PHM)
systems, most of the methodologies utilize machine learning (ML) or deep
learning (DL) through which either some features are extracted beforehand (in
the case of ML) or filters are used to extract features autonomously (in case
of DL) to perform the critical classification task. Particularly in the fault
detection and diagnosis of industrial robots where electric current, vibration
or acoustic emissions signals are the primary sources of information, a feature
domain that can map the signals into their constituent components with
compressed information at different levels can reduce the complexities and size
of typical ML and DL-based frameworks. The Deep Scattering Spectrum (DSS) is
one of the strategies that use the Wavelet Transform (WT) analogy to separate
and extract the information encoded in a signal's various temporal and
frequency domains. As a result, the focus of this work is on the study of the
DSS's relevance to fault detection and daignosis for mechanical components of
industrail robots. We used multiple industrial robots and distinct mechanical
faults to build an approach for classifying the faults using low-variance
features extracted from the input signals. The presented approach was
implemented on the practical test benches and demonstrated satisfactory
performance in fault detection and diagnosis for simple and complex
classification problems with a classification accuracy of 99.7% and 88.1%,
respectively.
- Abstract(参考訳): 予後・健康管理システム(PHM)の故障検出・診断において、ほとんどの手法は機械学習(ML)または深層学習(DL)を用いて、いくつかの特徴を事前に抽出する(MLの場合)か、フィルタを使用して、重要な分類タスクを実行する(DLの場合)自律的に特徴を抽出する(DLの場合)。
特に、電流、振動、または音響放射信号が主要な情報源である産業用ロボットの故障検出および診断において、異なるレベルで圧縮された情報を持つ構成要素に信号をマッピングできる特徴領域は、典型的なmlおよびdlベースのフレームワークの複雑さとサイズを減らすことができる。
ディープ散乱スペクトル(英: deep scattering spectrum、dss)は、ウェーブレット変換(wt)アナロジーを用いて、信号の様々な時間領域と周波数領域で符号化された情報を分離抽出する戦略の一つである。
その結果,本研究の焦点は,産業用ロボットの機械的構成要素に対するDSSの故障検出とデイグナシスとの関連性を検討することである。
複数の産業用ロボットと異なる機械故障を用いて,入力信号から抽出した低分散特徴を用いて故障を分類する手法を構築した。
提案手法は実用試験台に実装され, 99.7%, 88.1%の分類精度を有する単純・複雑分類問題に対して, 断層検出および診断において良好な性能を示した。
関連論文リスト
- Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
電気モーターの故障検出と診断は、産業システムの安全かつ信頼性の高い運転を保証する上で最も重要である。
マシン故障診断のための既存のデータ駆動ディープラーニングアプローチは、大量のラベル付きサンプルに大きく依存している。
ラベル付きサンプルを少ない量で活用する基礎モデルに基づくアクティブラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-27T03:25:12Z) - An Empirical Study on Fault Detection and Root Cause Analysis of Indium Tin Oxide Electrodes by Processing S-parameter Patterns [1.8843687952462742]
酸化インジウム(ITO)電極は、ディスプレイ、センサー、太陽電池などの光エレクトロニクスにおいて重要な役割を担っている。
従来の視覚検査は透明ITO電極では困難である。
次に、多層パーセプトロン(MLP)、畳み込みニューラルネットワーク(CNN)、トランスフォーマーなどのディープラーニングアプローチを使用して、欠陥の原因と重症度を同時に解析する。
論文 参考訳(メタデータ) (2023-08-16T08:33:50Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
本研究では, 軸受破壊機構の因果性を学ぶために, 因果解離隠れマルコフモデル (CDHM) を提案する。
具体的には、時系列データをフル活用し、振動信号を断層関連要因と断層関連要因に段階的に分解する。
アプリケーションの範囲を広げるために、学習された非絡み合った表現を他の作業環境に転送するために、教師なしのドメイン適応を採用する。
論文 参考訳(メタデータ) (2023-08-06T05:58:45Z) - Non-destructive Fault Diagnosis of Electronic Interconnects by Learning Signal Patterns of Reflection Coefficient in the Frequency Domain [1.8843687952462742]
本稿では,早期故障検出と相互接続欠陥の正確な診断のための新しい非破壊的手法を提案する。
提案手法は, 周波数範囲にわたる係数反射の信号パターンを利用して, 根本原因同定と重大度評価の両立を可能にする。
実験結果から,本手法は断層検出および診断に有効であり,実世界の産業応用に拡張できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-20T10:51:21Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
データ駆動型故障診断・隔離方式は, 燃料供給システムにおける故障とセンサ測定のために, 明確に開発されている。
モデルは機械学習の分類器を使用してトレーニングされ、トレーニングされた障害シナリオのセットをリアルタイムで検出する。
提案手法の利点, 性能, 性能を実証し, 実証するために, いくつかのシミュレーション実験を行った。
論文 参考訳(メタデータ) (2021-10-17T13:42:37Z) - Deep Metric Learning with Locality Sensitive Angular Loss for
Self-Correcting Source Separation of Neural Spiking Signals [77.34726150561087]
本稿では, 深層学習に基づく手法を提案し, 自動掃除とロバスト分離フィルタの必要性に対処する。
本手法は, ソース分離した高密度表面筋電図記録に基づいて, 人工的に劣化したラベルセットを用いて検証する。
このアプローチにより、ニューラルネットワークは、信号のラベル付けの不完全な方法を使用して、神経生理学的時系列を正確に復号することができる。
論文 参考訳(メタデータ) (2021-10-13T21:51:56Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
分析や分類に有用な特徴を効率的に抽出する識別機構を備えた生体音響信号分類器を提案する。
タスク指向の現在のバイオ音響認識法とは異なり、提案モデルは入力信号をベクトル部分空間に変換することに依存する。
提案法の有効性は,アヌラン,ミツバチ,蚊の3種の生物音響データを用いて検証した。
論文 参考訳(メタデータ) (2021-03-18T11:01:21Z) - An Explainable Artificial Intelligence Approach for Unsupervised Fault
Detection and Diagnosis in Rotating Machinery [2.055054374525828]
本稿では,回転機械の故障検出と診断のための新しい手法を提案する。
この手法は,特徴抽出,障害検出,障害診断の3つの部分からなる。
提案手法の有効性は,機械的故障の異なる3つのデータセットに示される。
論文 参考訳(メタデータ) (2021-02-23T18:28:18Z) - Automatic detection of abnormal EEG signals using wavelet feature
extraction and gradient boosting decision tree [2.924868086534434]
多チャンネル脳波記録における脳信号の自動二分分類フレームワークを提案する。
本稿では,抽出した特徴量の品質を損なうことなく,特徴空間の次元を小さくする手法を提案する。
CatBoostは87.68%のバイナリ分類精度を達成し、同じデータセットの最先端の技術を上回る。
論文 参考訳(メタデータ) (2020-12-18T03:36:52Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
本研究では,識別情報を捕捉し,同時に過度に適合する問題を緩和する様々な手法について検討する。
我々は、ディープニューラルネットワークにおける従来の非線形アクティベーションを置き換えるために、Max Feature Map法を採用する。
2つのデータ拡張方法と2つの深いアーキテクチャモジュールは、システムの過度な適合を減らし、差別的なパワーを維持するためにさらに検討されている。
論文 参考訳(メタデータ) (2020-07-09T08:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。