論文の概要: Near Real-time CO$_2$ Emissions Based on Carbon Satellite And Artificial
Intelligence
- arxiv url: http://arxiv.org/abs/2210.09850v1
- Date: Tue, 11 Oct 2022 12:01:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 20:26:48.852298
- Title: Near Real-time CO$_2$ Emissions Based on Carbon Satellite And Artificial
Intelligence
- Title(参考訳): 炭素衛星と人工知能によるco$_2$排出のほぼリアルタイム化
- Authors: Zhengwen Zhang, Jingjin Gu, Junhua Zhao, Jianwei Huang, Haifeng Wu
- Abstract要約: 我々は、データ検索アルゴリズムと2ステップのデータ駆動ソリューションの両方を含む統合AIベースのパイプラインを提案する。
まず、データ検索アルゴリズムは、炭素衛星、炭素源の情報、およびいくつかの環境要因を含むマルチモーダルデータから効率的なデータセットを生成することができる。
第二に、深層学習技術の強力な表現を適用した2段階のデータ駆動ソリューションは、人為的CO$排出の定量化を学習する。
- 参考スコア(独自算出の注目度): 20.727982405167758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To limit global warming to pre-industrial levels, global governments,
industry and academia are taking aggressive efforts to reduce carbon emissions.
The evaluation of anthropogenic carbon dioxide (CO$_2$) emissions, however,
depends on the self-reporting information that is not always reliable. Society
need to develop an objective, independent, and generalized system to meter
CO$_2$ emissions. Satellite CO$_2$ observation from space that reports
column-average regional CO$_2$ dry-air mole fractions has gradually indicated
its potential to build such a system. Nevertheless, estimating anthropogenic
CO$_2$ emissions from CO$_2$ observing satellite is bottlenecked by the
influence of the highly complicated physical characteristics of atmospheric
activities. Here we provide the first method that combines the advanced
artificial intelligence (AI) techniques and the carbon satellite monitor to
quantify anthropogenic CO$_2$ emissions. We propose an integral AI based
pipeline that contains both a data retrieval algorithm and a two-step
data-driven solution. First, the data retrieval algorithm can generate
effective datasets from multi-modal data including carbon satellite, the
information of carbon sources, and several environmental factors. Second, the
two-step data-driven solution that applies the powerful representation of deep
learning techniques to learn to quantify anthropogenic CO$_2$ emissions from
satellite CO$_2$ observation with other factors. Our work unmasks the potential
of quantifying CO$_2$ emissions based on the combination of deep learning
algorithms and the carbon satellite monitor.
- Abstract(参考訳): 地球温暖化を産業前レベルまで抑えるため、世界政府、産業、アカデミアは二酸化炭素排出量削減に積極的に取り組んでいる。
しかし、人為的二酸化炭素(co$_2$)排出の評価は、必ずしも信頼できるとは限らない自己報告情報に依存する。
社会はCO$_2$排出量を測定する客観的で独立的で一般化されたシステムを開発する必要がある。
宇宙からの衛星 co$_2$ 観測では、コラム平均領域の co$_2$ 乾燥空気モル分画が徐々にそのようなシステムを構築する可能性を示唆している。
それでも、CO$_2$観測衛星からのCO$_2$放射を推定することは、大気活動の非常に複雑な物理的特性の影響でボトルネックとなる。
本稿では,人工知能(ai)技術と二酸化炭素排出量を定量化するためのカーボンサテライトモニターを組み合わせた最初の手法を提案する。
データ検索アルゴリズムと2ステップのデータ駆動ソリューションの両方を含む統合AIベースのパイプラインを提案する。
まず、データ検索アルゴリズムは、炭素衛星、炭素源の情報、およびいくつかの環境要因を含むマルチモーダルデータから効果的なデータセットを生成することができる。
第二に、深層学習技術の強力な表現を適用した2段階のデータ駆動ソリューションは、人工衛星のCO$_2$排出を他の要因とともに定量化する。
我々の研究は、深層学習アルゴリズムと炭素衛星モニターを組み合わせることでCO$2$の排出量を定量化する可能性を解き放っている。
関連論文リスト
- Enhancing Carbon Emission Reduction Strategies using OCO and ICOS data [40.572754656757475]
我々は,OCO-2(Orbiting Carbon Observatories)とOCO-3(Orbiting Carbon Observatories)の衛星データとICOS(Integrated Carbon Observation System)の地上観測とECMWFリアナリシスv5(ERA5)の気象データを統合することで,局部的なCO2モニタリングを強化する手法を提案する。
衛星観測から地上レベルCO2を予測するために,K-nearest neighbor (KNN) と機械学習モデルを用いて,3.92ppmのルート平均正方形誤差を達成した。
論文 参考訳(メタデータ) (2024-10-05T21:23:58Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
メタン (CH_4) は強力な温室効果ガスであり、20年間で二酸化炭素 (CO_2) の86倍の温暖化に寄与する。
この研究は、ショートウェーブ赤外線(SWIR)帯域におけるメタン点源検出センサの既存の情報を拡張する。
従来の機械学習(ML)アプローチと同様に、最先端の技術をレビューする。
論文 参考訳(メタデータ) (2024-08-27T15:03:20Z) - CarbonSense: A Multimodal Dataset and Baseline for Carbon Flux Modelling [9.05128569357374]
データ駆動型カーボンフラックスモデリングのための、最初の機械学習対応データセットであるCarbonSenseを紹介する。
我々の実験は、マルチモーダルなディープラーニング技術がこの領域にもたらす可能性を示している。
論文 参考訳(メタデータ) (2024-06-07T13:47:40Z) - A Comprehensive Approach to Carbon Dioxide Emission Analysis in High Human Development Index Countries using Statistical and Machine Learning Techniques [4.106914713812204]
世界規模の二酸化炭素排出量を効果的に削減するためには、二酸化炭素排出量の傾向を予測し、その排出量パターンに基づいて国を分類することが不可欠だ」と述べた。
本稿では,HDI(Human Development Index)を有する20カ国におけるCO2排出量の決定要因について,25年間にわたる経済,環境,エネルギー利用,再生可能資源に関連する要因について,詳細な比較研究を行った。
論文 参考訳(メタデータ) (2024-05-01T21:00:02Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
ジェネレーティブAI(GAI)は、AIoT(Artificial Intelligence of Things)の二酸化炭素排出量を減らす大きな可能性を秘めている
本稿では, 炭素排出量削減のためのGAIの可能性について検討し, 低炭素AIoTのための新しいGAI対応ソリューションを提案する。
本稿では,Large Language Model (LLM) を利用したCO_2排出最適化フレームワークを提案し,このフレームワークにより,プラグ可能なLLMとRetrieval Augmented Generation (RAG) モジュールを設計する。
論文 参考訳(メタデータ) (2024-04-28T05:46:28Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
メタンは最も強力な温室効果ガスの1つである。
現在のメタン放出モニタリング技術は、近似的な放出要因や自己報告に依存している。
深層学習法は、Sentinel-2衛星マルチスペクトルデータにおけるメタン漏れの自動検出に利用することができる。
論文 参考訳(メタデータ) (2023-08-21T19:36:50Z) - Machine Guided Discovery of Novel Carbon Capture Solvents [48.7576911714538]
機械学習は、材料開発における時間とリソースの負担を軽減するための有望な方法を提供する。
そこで我々は, 市販の酸性ガススクラップ式炭素捕捉装置に適合する新規な水性アミンを, エンドツーエンドで発見する「発見サイクル」を開発した。
予測プロセスは、材料パラメータの両方の実験に対して60%の精度を示し、外部テストセット上では1つのパラメータに対して80%の精度を示す。
論文 参考訳(メタデータ) (2023-03-24T18:32:38Z) - Carbon Emission Prediction on the World Bank Dataset for Canada [0.9256577986166795]
本稿では,今後数年間の二酸化炭素排出量(CO2排出量)の予測方法について述べる。
この予測は過去50年間のデータに基づいている。
このデータセットには1960年から2018年までの全国のCO2排出量(一人当たりメートル)が含まれている。
論文 参考訳(メタデータ) (2022-11-26T07:04:52Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
eco2AIでは、エネルギー消費の追跡と地域CO2排出量の正当性に重点を置いている。
モチベーションは、サステナブルAIとグリーンAI経路の両方で、AIベースの温室効果ガスの隔離サイクルの概念からもたらされる。
論文 参考訳(メタデータ) (2022-07-31T09:34:53Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。
私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-10T17:04:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。