Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware
- URL: http://arxiv.org/abs/2210.10133v4
- Date: Mon, 17 Jun 2024 21:38:42 GMT
- Title: Efficient Privacy-Preserving Machine Learning with Lightweight Trusted Hardware
- Authors: Pengzhi Huang, Thang Hoang, Yueying Li, Elaine Shi, G. Edward Suh,
- Abstract summary: This paper proposes a new secure machine learning inference platform assisted by a small dedicated security processor.
We achieve significant performance improvements compared to state-of-the-art distributed Privacy-Preserving Machine Learning (PPML) protocols.
Our technique is not limited by the size of secure memory in a TEE and can support high-capacity modern neural networks like ResNet18 and Transformer.
- Score: 20.21755520998494
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose a new secure machine learning inference platform assisted by a small dedicated security processor, which will be easier to protect and deploy compared to today's TEEs integrated into high-performance processors. Our platform provides three main advantages over the state-of-the-art: (i) We achieve significant performance improvements compared to state-of-the-art distributed Privacy-Preserving Machine Learning (PPML) protocols, with only a small security processor that is comparable to a discrete security chip such as the Trusted Platform Module (TPM) or on-chip security subsystems in SoCs similar to the Apple enclave processor. In the semi-honest setting with WAN/GPU, our scheme is 4X-63X faster than Falcon (PoPETs'21) and AriaNN (PoPETs'22) and 3.8X-12X more communication efficient. We achieve even higher performance improvements in the malicious setting. (ii) Our platform guarantees security with abort against malicious adversaries under honest majority assumption. (iii) Our technique is not limited by the size of secure memory in a TEE and can support high-capacity modern neural networks like ResNet18 and Transformer. While previous work investigated the use of high-performance TEEs in PPML, this work represents the first to show that even tiny secure hardware with really limited performance can be leveraged to significantly speed-up distributed PPML protocols if the protocol can be carefully designed for lightweight trusted hardware.
Related papers
- The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries [14.232901861974819]
Privacy-preserving machine learning (PPML) is an innovative approach that allows for secure data analysis while safeguarding sensitive information.
We introduce efficient protocol for secure linear function evaluation.
We extend the protocol to handle linear and non-linear layers, ensuring compatibility with a wide range of machine-learning models.
arXiv Detail & Related papers (2024-11-14T08:55:14Z) - Designing Short-Stage CDC-XPUFs: Balancing Reliability, Cost, and
Security in IoT Devices [2.28438857884398]
Physically Unclonable Functions (PUFs) generate unique cryptographic keys from inherent hardware variations.
Traditional PUFs like Arbiter PUFs (APUFs) and XOR Arbiter PUFs (XOR-PUFs) are susceptible to machine learning (ML) and reliability-based attacks.
We propose an optimized CDC-XPUF design that incorporates a pre-selection strategy to enhance reliability and introduces a novel lightweight architecture.
arXiv Detail & Related papers (2024-09-26T14:50:20Z) - SLIP: Securing LLMs IP Using Weights Decomposition [0.0]
Large language models (LLMs) have recently seen widespread adoption, in both academia and industry.
As these models grow, they become valuable intellectual property (IP), reflecting enormous investments by their owners.
Current methods to protect models' IP on the edge have limitations in terms of practicality, loss in accuracy, or suitability to requirements.
We introduce a novel hybrid inference algorithm, named SLIP, designed to protect edge-deployed models from theft.
arXiv Detail & Related papers (2024-07-15T16:37:55Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
Confidential computing enables the protection of confidential code and data in a co-tenanted cloud deployment using specialized hardware isolation units called Trusted Execution Environments (TEEs)
TEEs offer low-level C/C++-based toolchains that are susceptible to inherent memory safety vulnerabilities and lack language constructs to monitor explicit and implicit information-flow leaks.
We address the above with HasTEE+, a domain-specific language (cla) embedded in Haskell that enables programming TEEs in a high-level language with strong type-safety.
arXiv Detail & Related papers (2024-01-17T00:56:23Z) - Tamper-Evident Pairing [55.2480439325792]
Tamper-Evident Pairing (TEP) is an improvement of the Push-Button configuration (PBC) standard.
TEP relies on the Tamper-Evident Announcement (TEA), which guarantees that an adversary can neither tamper a transmitted message without being detected, nor hide the fact that the message has been sent.
This paper provides a comprehensive overview of the TEP protocol, including all information needed to understand how it works.
arXiv Detail & Related papers (2023-11-24T18:54:00Z) - Putting a Padlock on Lambda -- Integrating vTPMs into AWS Firecracker [49.1574468325115]
Software services place implicit trust in the cloud provider, without an explicit trust relationship.
There is currently no cloud provider that exposes Trusted Platform Module capabilities.
We improve trust by integrating a virtual TPM device into the Firecracker, originally developed by Amazon Web Services.
arXiv Detail & Related papers (2023-10-05T13:13:55Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices [67.65883495888258]
We present SyzTrust, the first state-aware fuzzing framework for vetting the security of resource-limited Trusted OSes.
SyzTrust adopts a hardware-assisted framework to enable fuzzing Trusted OSes directly on IoT devices.
We evaluate SyzTrust on Trusted OSes from three major vendors: Samsung, Tsinglink Cloud, and Ali Cloud.
arXiv Detail & Related papers (2023-09-26T08:11:38Z) - MPCLeague: Robust MPC Platform for Privacy-Preserving Machine Learning [5.203329540700177]
This thesis focuses on designing efficient MPC frameworks for 2, 3 and 4 parties, with at most one corruption and supports ring structures.
We propose two variants for each of our frameworks, with one variant aiming to minimise the execution time while the other focuses on the monetary cost.
arXiv Detail & Related papers (2021-12-26T09:25:32Z) - Perun: Secure Multi-Stakeholder Machine Learning Framework with GPU
Support [1.5362025549031049]
Perun is a framework for confidential multi-stakeholder machine learning.
It executes ML training on hardware accelerators (e.g., GPU) while providing security guarantees.
During the ML training on CIFAR-10 and real-world medical datasets, Perun achieved a 161x to 1560x speedup.
arXiv Detail & Related papers (2021-03-31T08:31:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.