An Early Experience with Confidential Computing Architecture for On-Device Model Protection
- URL: http://arxiv.org/abs/2504.08508v1
- Date: Fri, 11 Apr 2025 13:21:33 GMT
- Title: An Early Experience with Confidential Computing Architecture for On-Device Model Protection
- Authors: Sina Abdollahi, Mohammad Maheri, Sandra Siby, Marios Kogias, Hamed Haddadi,
- Abstract summary: Arm Confidential Computing Architecture (CCA) is a new Arm extension for on-device machine learning (ML)<n>In this paper, we evaluate the performance-privacy trade-offs of deploying models within CCA.<n>Our framework can successfully protect the model against membership inference attack by an 8.3% reduction in the adversary's success rate.
- Score: 6.024889136631505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying machine learning (ML) models on user devices can improve privacy (by keeping data local) and reduce inference latency. Trusted Execution Environments (TEEs) are a practical solution for protecting proprietary models, yet existing TEE solutions have architectural constraints that hinder on-device model deployment. Arm Confidential Computing Architecture (CCA), a new Arm extension, addresses several of these limitations and shows promise as a secure platform for on-device ML. In this paper, we evaluate the performance-privacy trade-offs of deploying models within CCA, highlighting its potential to enable confidential and efficient ML applications. Our evaluations show that CCA can achieve an overhead of, at most, 22% in running models of different sizes and applications, including image classification, voice recognition, and chat assistants. This performance overhead comes with privacy benefits; for example, our framework can successfully protect the model against membership inference attack by an 8.3% reduction in the adversary's success rate. To support further research and early adoption, we make our code and methodology publicly available.
Related papers
- THEMIS: Towards Practical Intellectual Property Protection for Post-Deployment On-Device Deep Learning Models [36.02405283730231]
On-device deep learning (DL) has rapidly gained adoption in mobile apps, offering the benefits of offline model inference and user privacy preservation over cloud-based approaches.<n>It inevitably stores models on user devices, introducing new vulnerabilities, particularly model-stealing attacks and intellectual property infringement.<n>In this paper, we propose THEMIS, an automatic tool that lifts the read-only restriction of on-device DL models by reconstructing their writable counterparts.
arXiv Detail & Related papers (2025-03-31T05:58:57Z) - TEESlice: Protecting Sensitive Neural Network Models in Trusted Execution Environments When Attackers have Pre-Trained Models [12.253529209143197]
TSDP is a method that protects privacy-sensitive weights within TEEs and offloads insensitive weights to GPUs.
We introduce a novel partition before training strategy, which effectively separates privacy-sensitive weights from other components of the model.
Our evaluation demonstrates that our approach can offer full model protection with a computational cost reduced by a factor of 10.
arXiv Detail & Related papers (2024-11-15T04:52:11Z) - Position: On-Premises LLM Deployment Demands a Middle Path: Preserving Privacy Without Sacrificing Model Confidentiality [18.575663556525864]
We argue that deploying closed-source LLMs within user-controlled infrastructure enhances data privacy and mitigates misuse risks.<n>A well-designed on-premises deployment must ensure model confidentiality -- by preventing model theft -- and offer privacy-preserving customization.<n>Our findings demonstrate that privacy and confidentiality can coexist, paving the way for secure on-premises AI deployment.
arXiv Detail & Related papers (2024-10-15T02:00:36Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - GuaranTEE: Towards Attestable and Private ML with CCA [6.024889136631505]
GuaranTEE is a framework to provide attestable private machine learning on the edge.
We evaluate CCA's feasibility to deploy ML models by developing, evaluating, and openly releasing a prototype.
arXiv Detail & Related papers (2024-03-29T23:07:29Z) - MF-CLIP: Leveraging CLIP as Surrogate Models for No-box Adversarial Attacks [65.86360607693457]
No-box attacks, where adversaries have no prior knowledge, remain relatively underexplored despite its practical relevance.<n>This work presents a systematic investigation into leveraging large-scale Vision-Language Models (VLMs) as surrogate models for executing no-box attacks.<n>Our theoretical and empirical analyses reveal a key limitation in the execution of no-box attacks stemming from insufficient discriminative capabilities for direct application of vanilla CLIP as a surrogate model.<n>We propose MF-CLIP: a novel framework that enhances CLIP's effectiveness as a surrogate model through margin-aware feature space optimization.
arXiv Detail & Related papers (2023-07-13T08:10:48Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z) - PRECAD: Privacy-Preserving and Robust Federated Learning via
Crypto-Aided Differential Privacy [14.678119872268198]
Federated Learning (FL) allows multiple participating clients to train machine learning models collaboratively by keeping their datasets local and only exchanging model updates.
Existing FL protocol designs have been shown to be vulnerable to attacks that aim to compromise data privacy and/or model robustness.
We develop a framework called PRECAD, which simultaneously achieves differential privacy (DP) and enhances robustness against model poisoning attacks with the help of cryptography.
arXiv Detail & Related papers (2021-10-22T04:08:42Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.