Domain Adaptation in 3D Object Detection with Gradual Batch Alternation
Training
- URL: http://arxiv.org/abs/2210.10180v2
- Date: Sat, 5 Aug 2023 01:29:51 GMT
- Title: Domain Adaptation in 3D Object Detection with Gradual Batch Alternation
Training
- Authors: Mrigank Rochan, Xingxin Chen, Alaap Grandhi, Eduardo R. Corral-Soto,
Bingbing Liu
- Abstract summary: We propose a training strategy that can adapt from a large labeled source domain to an insufficiently labeled target domain.
The idea is to initiate the training with the batch of samples from the source and target domain data in an alternate fashion, but then gradually reduce the amount of the source domain data.
This way the model slowly shifts towards the target domain and eventually better adapt to it.
- Score: 13.727464375608765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of domain adaptation in LiDAR-based 3D object
detection. Towards this, we propose a simple yet effective training strategy
called Gradual Batch Alternation that can adapt from a large labeled source
domain to an insufficiently labeled target domain. The idea is to initiate the
training with the batch of samples from the source and target domain data in an
alternate fashion, but then gradually reduce the amount of the source domain
data over time as the training progresses. This way the model slowly shifts
towards the target domain and eventually better adapt to it. The domain
adaptation experiments for 3D object detection on four benchmark autonomous
driving datasets, namely ONCE, PandaSet, Waymo, and nuScenes, demonstrate
significant performance gains over prior arts and strong baselines.
Related papers
- Robust Source-Free Domain Adaptation for Fundus Image Segmentation [3.585032903685044]
Unlabelled Domain Adaptation (UDA) is a learning technique that transfers knowledge learned in the source domain from labelled data to the target domain with only unlabelled data.
In this study, we propose a two-stage training stage for robust domain adaptation.
We propose a novel robust pseudo-label and pseudo-boundary (PLPB) method, which effectively utilizes unlabeled target data to generate pseudo labels and pseudo boundaries.
arXiv Detail & Related papers (2023-10-25T14:25:18Z) - Bi3D: Bi-domain Active Learning for Cross-domain 3D Object Detection [32.29833072399945]
We propose a Bi-domain active learning approach, namely Bi3D, to solve the cross-domain 3D object detection task.
Bi3D achieves a promising target-domain detection accuracy (89.63% on KITTI) compared with UDAbased work (84.29%), even surpassing the detector trained on the full set of the labeled target domain.
arXiv Detail & Related papers (2023-03-10T12:38:37Z) - SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
We present a novel Semi-Supervised Domain Adaptation method for 3D object detection (SSDA3D)
SSDA3D includes an Inter-domain Adaptation stage and an Intra-domain Generalization stage.
Experiments show that, with only 10% labeled target data, our SSDA3D can surpass the fully-supervised oracle model with 100% target label.
arXiv Detail & Related papers (2022-12-06T09:32:44Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
We propose STMono3D, a new self-teaching framework for unsupervised domain adaptation on Mono3D.
We develop a teacher-student paradigm to generate adaptive pseudo labels on the target domain.
STMono3D achieves remarkable performance on all evaluated datasets and even surpasses fully supervised results on the KITTI 3D object detection dataset.
arXiv Detail & Related papers (2022-04-25T12:23:07Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
Deep learning-based 3D object detection has achieved unprecedented success with the advent of large-scale autonomous driving datasets.
Existing 3D domain adaptive detection methods often assume prior access to the target domain annotations, which is rarely feasible in the real world.
We study a more realistic setting, unsupervised 3D domain adaptive detection, which only utilizes source domain annotations.
arXiv Detail & Related papers (2021-07-23T17:19:23Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - Deep Domain-Adversarial Image Generation for Domain Generalisation [115.21519842245752]
Machine learning models typically suffer from the domain shift problem when trained on a source dataset and evaluated on a target dataset of different distribution.
To overcome this problem, domain generalisation (DG) methods aim to leverage data from multiple source domains so that a trained model can generalise to unseen domains.
We propose a novel DG approach based on emphDeep Domain-Adversarial Image Generation (DDAIG)
arXiv Detail & Related papers (2020-03-12T23:17:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.