論文の概要: Non-iterative optimization of pseudo-labeling thresholds for training
object detection models from multiple datasets
- arxiv url: http://arxiv.org/abs/2210.10221v1
- Date: Wed, 19 Oct 2022 00:31:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 13:52:56.458431
- Title: Non-iterative optimization of pseudo-labeling thresholds for training
object detection models from multiple datasets
- Title(参考訳): 複数のデータセットからオブジェクト検出モデルをトレーニングするための擬似ラベル閾値の非イテレーティブ最適化
- Authors: Yuki Tanaka, Shuhei M. Yoshida, Makoto Terao
- Abstract要約: 低コストデータセットの集合からオブジェクト検出を学習するために、擬似ラベル閾値を最適化する非定型的手法を提案する。
提案手法はCOCOおよびVOCデータセット上の格子探索に匹敵するmAPを実現することを実験的に実証した。
- 参考スコア(独自算出の注目度): 2.1485350418225244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a non-iterative method to optimize pseudo-labeling thresholds for
learning object detection from a collection of low-cost datasets, each of which
is annotated for only a subset of all the object classes. A popular approach to
this problem is first to train teacher models and then to use their confident
predictions as pseudo ground-truth labels when training a student model. To
obtain the best result, however, thresholds for prediction confidence must be
adjusted. This process typically involves iterative search and repeated
training of student models and is time-consuming. Therefore, we develop a
method to optimize the thresholds without iterative optimization by maximizing
the $F_\beta$-score on a validation dataset, which measures the quality of
pseudo labels and can be measured without training a student model. We
experimentally demonstrate that our proposed method achieves an mAP comparable
to that of grid search on the COCO and VOC datasets.
- Abstract(参考訳): 本稿では,低コストデータセットの集合からオブジェクト検出を学習するための擬似ラベル閾値を最適化するための非定型的手法を提案する。
この問題に対する一般的なアプローチは、まず教師モデルを訓練し、学生モデルを訓練する際、その自信ある予測を疑似地道ラベルとして使うことである。
しかし、最良の結果を得るためには、予測信頼のしきい値を調整する必要がある。
このプロセスは通常、反復的な探索と学生モデルの繰り返しの訓練を伴い、時間を要する。
そこで,検証データセット上でのF_\beta$-scoreを最大化することにより,反復的最適化を伴わずに閾値を最適化する手法を開発した。
提案手法はCOCOおよびVOCデータセット上の格子探索に匹敵するmAPを実現することを実験的に実証した。
関連論文リスト
- Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
モデル予測に依存しない階層型動的ラベル付け(HDL)アルゴリズムを提案し,画像埋め込みを用いてサンプルラベルを生成する。
本手法は,半教師付き学習における擬似ラベル生成のパラダイムを変える可能性がある。
論文 参考訳(メタデータ) (2024-04-26T06:00:27Z) - Classification Tree-based Active Learning: A Wrapper Approach [4.706932040794696]
本稿では,木構造にサンプリングプロセスを整理し,分類のためのラッパー能動的学習法を提案する。
ラベル付き標本の初期集合上に構築された分類木は、空間を低エントロピー領域に分解すると考えられる。
この適応は、既存のアクティブラーニング手法よりも大幅に向上することが証明されている。
論文 参考訳(メタデータ) (2024-04-15T17:27:00Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
本稿では,テスト時間適応性を高めるための新しい補完学習手法を提案する。
テスト時適応タスクでは、ソースドメインからの情報は通常利用できない。
我々は,相補ラベルのリスク関数がバニラ損失式と一致することを強調した。
論文 参考訳(メタデータ) (2023-01-15T03:36:33Z) - Adaptive Self-Training for Object Detection [13.07105239116411]
オブジェクト検出のための自己評価手法(ASTOD)を提案する。
ASTODはスコアヒストグラムの基底値に基づいて閾値を決定する。
擬似ラベル付けの段階では, ラベル付き画像の異なるビューを用いて, 誤り予測の回数を減らす。
論文 参考訳(メタデータ) (2022-12-07T15:10:40Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
我々は、さらなる事前学習段階の正則化として自己蒸留を提案する。
画像およびテキスト分類タスクのための様々なベンチマークデータセットにおける自己蒸留の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2022-09-30T02:25:12Z) - ST-CoNAL: Consistency-Based Acquisition Criterion Using Temporal
Self-Ensemble for Active Learning [7.94190631530826]
トレーニングプロセスの効率を最大化するためには、アクティブラーニング(AL)がますます重要になっている。
学生教師の一貫性に基づくALアルゴリズム(ST-CoNAL)を提案する。
CIFAR-10、CIFAR-100、Caltech-256、Tiny ImageNetの画像分類タスクに対して行われた実験は、提案したSTCoNALが既存の取得方法よりも大幅に優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-05T17:25:59Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。