Performance of different machine learning methods on activity
recognition and pose estimation datasets
- URL: http://arxiv.org/abs/2210.10247v1
- Date: Wed, 19 Oct 2022 02:07:43 GMT
- Title: Performance of different machine learning methods on activity
recognition and pose estimation datasets
- Authors: Love Trivedi, Raviit Vij
- Abstract summary: This paper employs both classical and ensemble approaches on rich pose estimation (OpenPose) and HAR datasets.
The results show that overall, random forest yields the highest accuracy in classifying ADLs.
Relatively all the models have excellent performance across both datasets, except for logistic regression and AdaBoost perform poorly in the HAR one.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: With advancements in computer vision taking place day by day, recently a lot
of light is being shed on activity recognition. With the range for real-world
applications utilizing this field of study increasing across a multitude of
industries such as security and healthcare, it becomes crucial for businesses
to distinguish which machine learning methods perform better than others in the
area. This paper strives to aid in this predicament i.e. building upon previous
related work, it employs both classical and ensemble approaches on rich pose
estimation (OpenPose) and HAR datasets. Making use of appropriate metrics to
evaluate the performance for each model, the results show that overall, random
forest yields the highest accuracy in classifying ADLs. Relatively all the
models have excellent performance across both datasets, except for logistic
regression and AdaBoost perform poorly in the HAR one. With the limitations of
this paper also discussed in the end, the scope for further research is vast,
which can use this paper as a base in aims of producing better results.
Related papers
- Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
We introduce a novel framework, Balancing Active Learning (BAL), which constructs adaptive sub-pools to balance diverse and uncertain data.
Our approach outperforms all established active learning methods on widely recognized benchmarks by 1.20%.
arXiv Detail & Related papers (2023-12-26T08:14:46Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - A Comprehensive Review of Trends, Applications and Challenges In
Out-of-Distribution Detection [0.76146285961466]
Field of study has emerged, focusing on detecting out-of-distribution data subsets and enabling a more comprehensive generalization.
As many deep learning based models have achieved near-perfect results on benchmark datasets, the need to evaluate these models' reliability and trustworthiness is felt more strongly than ever.
This paper presents a survey that, in addition to reviewing more than 70 papers in this field, presents challenges and directions for future works and offers a unifying look into various types of data shifts and solutions for better generalization.
arXiv Detail & Related papers (2022-09-26T18:13:14Z) - Data Augmentation techniques in time series domain: A survey and
taxonomy [0.20971479389679332]
Deep neural networks used to work with time series heavily depend on the size and consistency of the datasets used in training.
This work systematically reviews the current state-of-the-art in the area to provide an overview of all available algorithms.
The ultimate aim of this study is to provide a summary of the evolution and performance of areas that produce better results to guide future researchers in this field.
arXiv Detail & Related papers (2022-06-25T17:09:00Z) - Data-Centric Machine Learning in the Legal Domain [0.2624902795082451]
This paper explores how changes in a data set influence the measured performance of a model.
Using three publicly available data sets from the legal domain, we investigate how changes to their size, the train/test splits, and the human labelling accuracy impact the performance.
The observed effects are surprisingly pronounced, especially when the per-class performance is considered.
arXiv Detail & Related papers (2022-01-17T23:05:14Z) - Open-Set Recognition: A Good Closed-Set Classifier is All You Need [146.6814176602689]
We show that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes.
We use this correlation to boost the performance of the cross-entropy OSR 'baseline' by improving its closed-set accuracy.
We also construct new benchmarks which better respect the task of detecting semantic novelty.
arXiv Detail & Related papers (2021-10-12T17:58:59Z) - Effective Evaluation of Deep Active Learning on Image Classification
Tasks [10.27095298129151]
We present a unified re-implementation of state-of-the-art active learning algorithms in the context of image classification.
On the positive side, we show that AL techniques are 2x to 4x more label-efficient compared to RS with the use of data augmentation.
arXiv Detail & Related papers (2021-06-16T23:29:39Z) - BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information
Retrieval Models [41.45240621979654]
We introduce BEIR, a heterogeneous benchmark for information retrieval.
We study the effectiveness of nine state-of-the-art retrieval models in a zero-shot evaluation setup.
Dense-retrieval models are computationally more efficient but often underperform other approaches.
arXiv Detail & Related papers (2021-04-17T23:29:55Z) - Rebuilding Trust in Active Learning with Actionable Metrics [77.99796068970569]
Active Learning (AL) is an active domain of research, but is seldom used in the industry despite the pressing needs.
This is in part due to a misalignment of objectives, while research strives at getting the best results on selected datasets.
We present various actionable metrics to help rebuild trust of industrial practitioners in Active Learning.
arXiv Detail & Related papers (2020-12-18T09:34:59Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.