論文の概要: Spectroscopic data de-noising via training-set-free deep learning method
- arxiv url: http://arxiv.org/abs/2210.10494v2
- Date: Mon, 15 May 2023 12:07:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 00:35:05.764085
- Title: Spectroscopic data de-noising via training-set-free deep learning method
- Title(参考訳): 学習自由深層学習法による分光データデノイズ化
- Authors: Dongchen Huang, Junde Liu, Tian Qian, and Yi-feng Yang
- Abstract要約: トレーニングセットを必要とせずに固有スペクトル情報を抽出するデノイズ化手法を開発した。
本手法ではスペクトル自体の自己相関情報を活用することができる。
固有エネルギーバンドの特徴を保存し、さらなる分析と処理を容易にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: De-noising plays a crucial role in the post-processing of spectra. Machine
learning-based methods show good performance in extracting intrinsic
information from noisy data, but often require a high-quality training set that
is typically inaccessible in real experimental measurements. Here, using
spectra in angle-resolved photoemission spectroscopy (ARPES) as an example, we
develop a de-noising method for extracting intrinsic spectral information
without the need for a training set. This is possible as our method leverages
the self-correlation information of the spectra themselves. It preserves the
intrinsic energy band features and thus facilitates further analysis and
processing. Moreover, since our method is not limited by specific properties of
the training set compared to previous ones, it may well be extended to other
fields and application scenarios where obtaining high-quality multidimensional
training data is challenging.
- Abstract(参考訳): 脱ノイズはスペクトルのポストプロセッシングにおいて重要な役割を果たす。
機械学習に基づく手法は、ノイズの多いデータから本質的な情報を抽出する上で優れた性能を示すが、実実験では通常アクセスできない高品質のトレーニングセットを必要とすることが多い。
そこで本研究では,角度分解光電子分光法(ARPES)のスペクトルを例として,固有スペクトル情報をトレーニングセットなしで抽出する方法を開発した。
この方法はスペクトル自体の自己相関情報を活用することで可能となる。
固有エネルギーバンドの特徴を保存し、さらなる分析と処理を容易にする。
さらに,本手法はトレーニングセットの特定の特性に制限されないため,高品質な多次元トレーニングデータを取得することが困難な他の分野やアプリケーションシナリオにも拡張できる可能性がある。
関連論文リスト
- Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
単純コンプレックスは、マルチウェイ依存によるデータのモデリングに有効である。
我々は、単純なデータを処理するための対照的な自己教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2023-09-14T00:40:07Z) - Spectrum-BERT: Pre-training of Deep Bidirectional Transformers for
Spectral Classification of Chinese Liquors [0.0]
本稿では,中国酒のスペクトル分類のための双方向トランスフォーマーの事前学習手法を提案し,これをSpectrum-BERTと略した。
我々はNext Curve Prediction (NCP) と Masked Curve Model (MCM) の2つの事前学習タスクを精巧に設計し、未ラベルのサンプルを効果的に活用できるようにした。
比較実験では、提案したSpectrum-BERTは、複数のメトリクスでベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2022-10-22T13:11:25Z) - Spectral Decomposition Representation for Reinforcement Learning [100.0424588013549]
本稿では, スペクトル分解表現法(SPEDER)を提案する。この手法は, データ収集ポリシーに急激な依存を生じさせることなく, ダイナミックスから状態-作用の抽象化を抽出する。
理論的解析により、オンライン設定とオフライン設定の両方において提案アルゴリズムのサンプル効率が確立される。
実験により、いくつかのベンチマークで現在の最先端アルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-08-19T19:01:30Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
本研究では,基礎となるゆらぎ磁場のスペクトル密度を効率的に再構成するディープニューラルネットワークを実装した。
これらの結果は、色中心に基づくナノスケールセンシングとイメージングに機械学習手法を適用する機会を生み出す。
論文 参考訳(メタデータ) (2022-08-01T19:18:26Z) - Don't Pay Attention to the Noise: Learning Self-supervised
Representations of Light Curves with a Denoising Time Series Transformer [0.0]
我々は、DTST(Denoising Time Series Transformer)と呼ばれる単純なトランスモデルを提案する。
マスク対象のトレーニングにおいて,時系列データセットのノイズや外れ値の除去に優れることを示す。
我々は、トランジット系外惑星宇宙衛星(TESS)の実際の恒星光曲線に関する実験を行う。
論文 参考訳(メタデータ) (2022-07-06T16:10:11Z) - Explainable Predictive Modeling for Limited Spectral Data [0.0]
本稿では、高次元および限られたスペクトルデータの予測結果を解釈するために、最近の説明可能なAI技術を適用する。
機器の解像度制限のため、分光データの重要な領域をピンポイントすると、データ収集プロセスを最適化する経路が生成される。
具体的には,MLモデルの評価がリアルタイムの実践に堅牢であることを保証するために,3つの異なるシナリオを設計する。
論文 参考訳(メタデータ) (2022-02-09T15:46:17Z) - Deep learning-based statistical noise reduction for multidimensional
spectral data [3.0396858935319724]
我々は,ディープラーニングを制約を克服するインテリジェントな方法として活用する認知的手法を実証する。
我々は,2桁の取得時間で取得したデータに対して,デノナイジングニューラルネットワークによって同様の2次微分および線形状解析を行うことができることを示した。
論文 参考訳(メタデータ) (2021-07-02T05:37:16Z) - Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in
Frequency Domain [88.7339322596758]
本論文では,空間画像と位相スペクトルを組み合わせ,顔の偽造のアップサンプリング成果をキャプチャするSPSL(Spatial-Phase Shallow Learning)法を提案する。
SPSLは、クロスデータセット評価における最先端性能とマルチクラス分類を実現し、単一データセット評価において同等の結果を得ることができる。
論文 参考訳(メタデータ) (2021-03-02T16:45:08Z) - Spectral Methods for Data Science: A Statistical Perspective [37.2486912080998]
スペクトル法は、巨大でノイズの多い不完全なデータから情報を抽出するための単純で驚くほど効果的な手法として登場した。
この本は、現代の統計学的観点から、体系的で包括的でアクセスしやすいスペクトル法の導入を意図している。
論文 参考訳(メタデータ) (2020-12-15T18:40:56Z) - Spectral Analysis Network for Deep Representation Learning and Image
Clustering [53.415803942270685]
本稿ではスペクトル分析に基づく教師なし深層表現学習のための新しいネットワーク構造を提案する。
パッチレベルで画像間の局所的な類似性を識別できるため、閉塞に対してより堅牢である。
クラスタリングに親しみやすい表現を学習し、データサンプル間の深い相関を明らかにすることができる。
論文 参考訳(メタデータ) (2020-09-11T05:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。